213 research outputs found

    Persistence of amygdala hyperactivity to subliminal negative emotion processing in the long-term course of depression

    Get PDF
    Biased emotion processing has been suggested to underlie the etiology and maintenance of depression. Neuroimaging studies have shown mood-congruent alterations in amygdala activity in patients with acute depression, even during early, automatic stages of emotion processing. However, due to a lack of prospective studies over periods longer than 8 weeks, it is unclear whether these neurofunctional abnormalities represent a persistent correlate of depression even in remission. In this prospective case-control study, we aimed to examine brain functional correlates of automatic emotion processing in the long-term course of depression. In a naturalistic design, n = 57 patients with acute major depressive disorder (MDD) and n = 37 healthy controls (HC) were assessed with functional magnetic resonance imaging (fMRI) at baseline and after 2 years. Patients were divided into two subgroups according to their course of illness during the study period (n = 37 relapse, n = 20 no-relapse). During fMRI, participants underwent an affective priming task that assessed emotion processing of subliminally presented sad and happy compared to neutral face stimuli. A group × time × condition (3 × 2 × 2) ANOVA was performed for the amygdala as region-of-interest (ROI). At baseline, there was a significant group × condition interaction, resulting from amygdala hyperactivity to sad primes in patients with MDD compared to HC, whereas no difference between groups emerged for happy primes. In both patient subgroups, amygdala hyperactivity to sad primes persisted after 2 years, regardless of relapse or remission at follow-up. The results suggest that amygdala hyperactivity during automatic processing of negative stimuli persists during remission and represents a trait rather than a state marker of depression. Enduring neurofunctional abnormalities may reflect a consequence of or a vulnerability to depression

    Higher body weight-dependent neural activation during reward processing

    Get PDF
    Obesity is associated with alterations in brain structure and function, particularly in areas related to reward processing. Although brain structural investigations have demonstrated a continuous association between higher body weight and reduced gray matter in well-powered samples, functional neuroimaging studies have typically only contrasted individuals from the normal weight and obese body mass index (BMI) ranges with modest sample sizes. It remains unclear, whether the commonly found hyperresponsiveness of the reward circuit can (a) be replicated in well-powered studies and (b) be found as a function of higher body weight even below the threshold of clinical obesity. 383 adults across the weight spectrum underwent functional magnetic resonance imaging during a common card-guessing paradigm simulating monetary reward. Multiple regression was used to investigate the association of BMI and neural activation in the reward circuit. In addition, a one-way ANOVA model comparing three weight groups (normal weight, overweight, obese) was calculated. Higher BMI was associated with higher reward response in the bilateral insula. This association could no longer be found when participants with obesity were excluded from the analysis. The ANOVA revealed higher activation in obese vs. lean, but no difference between lean and overweight participants. The overactivation of reward-related brain areas in obesity is a consistent finding that can be replicated in large samples. In contrast to brain structural aberrations associated with higher body weight, the neurofunctional underpinnings of reward processing in the insula appear to be more pronounced in the higher body weight range

    Higher body weight-dependent neural activation during reward processing

    Get PDF
    Obesity is associated with alterations in brain structure and function, particularly in areas related to reward processing. Although brain structural investigations have demonstrated a continuous association between higher body weight and reduced gray matter in well-powered samples, functional neuroimaging studies have typically only contrasted individuals from the normal weight and obese body mass index (BMI) ranges with modest sample sizes. It remains unclear, whether the commonly found hyperresponsiveness of the reward circuit can (a) be replicated in well-powered studies and (b) be found as a function of higher body weight even below the threshold of clinical obesity. 383 adults across the weight spectrum underwent functional magnetic resonance imaging during a common card-guessing paradigm simulating monetary reward. Multiple regression was used to investigate the association of BMI and neural activation in the reward circuit. In addition, a one-way ANOVA model comparing three weight groups (normal weight, overweight, obese) was calculated. Higher BMI was associated with higher reward response in the bilateral insula. This association could no longer be found when participants with obesity were excluded from the analysis. The ANOVA revealed higher activation in obese vs. lean, but no difference between lean and overweight participants. The overactivation of reward-related brain areas in obesity is a consistent finding that can be replicated in large samples. In contrast to brain structural aberrations associated with higher body weight, the neurofunctional underpinnings of reward processing in the insula appear to be more pronounced in the higher body weight range

    Neural processing of emotional facial stimuli in specific phobia: An fMRI study

    Get PDF
    Background Patients with specific phobia (SP) show altered brain activation when confronted with phobia-specific stimuli. It is unclear whether this pathogenic activation pattern generalizes to other emotional stimuli. This study addresses this question by employing a well-powered sample while implementing an established paradigm using nonspecific aversive facial stimuli. Methods N = 111 patients with SP, spider subtype, and N = 111 healthy controls (HCs) performed a supraliminal emotional face-matching paradigm contrasting aversive faces versus shapes in a 3-T magnetic resonance imaging scanner. We performed region of interest (ROI) analyses for the amygdala, the insula, and the anterior cingulate cortex using univariate as well as machine-learning-based multivariate statistics based on this data. Additionally, we investigated functional connectivity by means of psychophysiological interaction (PPI). Results Although the presentation of emotional faces showed significant activation in all three ROIs across both groups, no group differences emerged in all ROIs. Across both groups and in the HC > SP contrast, PPI analyses showed significant task-related connectivity of brain areas typically linked to higher-order emotion processing with the amygdala. The machine learning approach based on whole-brain activity patterns could significantly differentiate the groups with 73% balanced accuracy. Conclusions Patients suffering from SP are characterized by differences in the connectivity of the amygdala and areas typically linked to emotional processing in response to aversive facial stimuli (inferior parietal cortex, fusiform gyrus, middle cingulate, postcentral cortex, and insula). This might implicate a subtle difference in the processing of nonspecific emotional stimuli and warrants more research furthering our understanding of neurofunctional alteration in patients with SP.Deutsche Forschungsgemeinschaft http://dx.doi.org/10.13039/501100001659Peer Reviewe

    Dynamics of affect modulation in neurodevelopmental disorders (DynAMoND) – study design of a prospective cohort study

    Get PDF
    Background Attention-deficit/hyperactivity disorder (ADHD) is a common neuro-developmental disorder that often persists into adulthood. Moreover, it is frequently accompanied by bipolar disorder (BD) as well as borderline personality disorder (BPD). It is unclear whether these disorders share underlying pathomechanisms, given that all three are characterized by alterations in affective states, either long or short-term. BD is characterized by infrequent but intense mood shifts, while ADHD and BPD involve more dynamic emotional fluctuations. It is yet to be determined whether these disorders represent distinct phenomena or different points on a spectrum of affective dysregulation. Methods This study seeks to distinguish the emotional dysregulation of BPD, ADHD, and BD by using digital phenotyping, a measurement burst electronic-diary method with different sampling rates, and accelerometry to measure participants’ activity. Our study will include 480 participants aged 14 to 50 (120 each from BPD, ADHD, BD, and healthy control groups) from five European sites. Participants’ smartphones will provide continuous data on their digital phenotypes, i.e., by indicators of physical activity and communication, for one year, along with daily evening ratings of mood and sleep. Moreover, five intensive measurement periods of five days each, called measurement bursts, will occur throughout the year, with electronic diaries asking participants to report on mood, self-esteem, impulsivity, life events, social interactions, and dysfunctional behaviors ten times a day. Moreover, participants will wear activity sensors during the five measurement bursts. Statistical analysis aims to identify whether affective dysregulation aspects share or differ across disorders. Specifically, data analysis aims to investigate the differences in parameters of affect fluctuation such as attractor strength and variability between disorders and to test the association of genetic risk factors for psychiatric disorders and resilience factors with critical parameters of affect modulation. Discussion The results of this study offer the potential to link patients’ external exposures with their affective state, reduce misdiagnosis, and determine the best timing for therapeutic interventions. Potential limitations of the study include insufficient recruitment of patients and drop-outs due to various protocol violations

    Shared and distinct structural brain networks related to childhood maltreatment and social support: connectome-based predictive modeling

    Get PDF
    Childhood maltreatment (CM) has been associated with changes in structural brain connectivity even in the absence of mental illness. Social support, an important protective factor in the presence of childhood maltreatment, has been positively linked to white matter integrity. However, the shared effects of current social support and CM and their association with structural connectivity remain to be investigated. They might shed new light on the neurobiological basis of the protective mechanism of social support. Using connectome-based predictive modeling (CPM), we analyzed structural connectomes of N  = 904 healthy adults derived from diffusion-weighted imaging. CPM predicts phenotypes from structural connectivity through a cross-validation scheme. Distinct and shared networks of white matter tracts predicting childhood trauma questionnaire scores and the social support questionnaire were identified. Additional analyses were applied to assess the stability of the results. CM and social support were predicted significantly from structural connectome data (all r s ≥ 0.119, all ps  ≤ 0.016). Edges predicting CM and social support were inversely correlated, i.e., positively correlated with CM and negatively with social support, and vice versa, with a focus on frontal and temporal regions including the insula and superior temporal lobe. CPM reveals the predictive value of the structural connectome for CM and current social support. Both constructs are inversely associated with connectivity strength in several brain tracts. While this underlines the interconnectedness of these experiences, it suggests social support acts as a protective factor following adverse childhood experiences, compensating for brain network alterations. Future longitudinal studies should focus on putative moderating mechanisms buffering these adverse experiences

    Identification of transdiagnostic psychiatric disorder subtypes using unsupervised learning

    Get PDF
    Psychiatric disorders show heterogeneous symptoms and trajectories, with current nosology not accurately reflecting their molecular etiology and the variability and symptomatic overlap within and between diagnostic classes. This heterogeneity impedes timely and targeted treatment. Our study aimed to identify psychiatric patient clusters that share clinical and genetic features and may profit from similar therapies. We used high-dimensional data clustering on deep clinical data to identify transdiagnostic groups in a discovery sample (N = 1250) of healthy controls and patients diagnosed with depression, bipolar disorder, schizophrenia, schizoaffective disorder, and other psychiatric disorders. We observed five diagnostically mixed clusters and ordered them based on severity. The least impaired cluster 0, containing most healthy controls, showed general well-being. Clusters 1-3 differed predominantly regarding levels of maltreatment, depression, daily functioning, and parental bonding. Cluster 4 contained most patients diagnosed with psychotic disorders and exhibited the highest severity in many dimensions, including medication load. Depressed patients were present in all clusters, indicating that we captured different disease stages or subtypes. We replicated all but the smallest cluster 1 in an independent sample (N = 622). Next, we analyzed genetic differences between clusters using polygenic scores (PGS) and the psychiatric family history. These genetic variables differed mainly between clusters 0 and 4 (prediction area under the receiver operating characteristic curve (AUC) = 81%;significant PGS: cross-disorder psychiatric risk, schizophrenia, and educational attainment). Our results confirm that psychiatric disorders consist of heterogeneous subtypes sharing molecular factors and symptoms. The identification of transdiagnostic clusters advances our understanding of the heterogeneity of psychiatric disorders and may support the development of personalized treatments

    Severity of current depression and remission status are associated with structural connectome alterations in major depressive disorder

    Get PDF
    Major depressive disorder (MDD) is associated to affected brain wiring. Little is known whether these changes are stable over time and hence might represent a biological predisposition, or whether these are state markers of current disease severity and recovery after a depressive episode. Human white matter network ("connectome") analysis via network science is a suitable tool to investigate the association between affected brain connectivity and MDD. This study examines structural connectome topology in 464 MDD patients (mean age: 36.6 years) and 432 healthy controls (35.6 years). MDD patients were stratified categorially by current disease status (acute vs. partial remission vs. full remission) based on DSM-IV criteria. Current symptom severity was assessed continuously via the Hamilton Depression Rating Scale (HAMD). Connectome matrices were created via a combination of T1-weighted magnetic resonance imaging (MRI) and tractography methods based on diffusion-weighted imaging. Global tract-based metrics were not found to show significant differences between disease status groups, suggesting conserved global brain connectivity in MDD. In contrast, reduced global fractional anisotropy (FA) was observed specifically in acute depressed patients compared to fully remitted patients and healthy controls. Within the MDD patients, FA in a subnetwork including frontal, temporal, insular, and parietal nodes was negatively associated with HAMD, an effect remaining when correcting for lifetime disease severity. Therefore, our findings provide new evidence of MDD to be associated with structural, yet dynamic, state-dependent connectome alterations, which covary with current disease severity and remission status after a depressive episode

    An uncertainty-aware, shareable, and transparent neural network architecture for brain-age modeling

    Get PDF
    The deviation between chronological age and age predicted from neuroimaging data has been identified as a sensitive risk marker of cross-disorder brain changes, growing into a cornerstone of biological age research. However, machine learning models underlying the field do not consider uncertainty, thereby confounding results with training data density and variability. Also, existing models are commonly based on homogeneous training sets, often not independently validated, and cannot be shared because of data protection issues. Here, we introduce an uncertainty-aware, shareable, and transparent Monte Carlo dropout composite quantile regression (MCCQR) Neural Network trained on N = 10,691 datasets from the German National Cohort. The MCCQR model provides robust, distribution-free uncertainty quantification in high-dimensional neuroimaging data, achieving lower error rates compared with existing models. In two examples, we demonstrate that it prevents spurious associations and increases power to detect deviant brain aging. We make the pretrained model and code publicly available.Publikationsfonds ML

    Human and chimpanzee shared and divergent neurobiological systems for general and specific cognitive brain functions

    Get PDF
    A long-standing topic of interest in human neurosciences is the understanding of the neurobiology underlying human cognition. Less commonly considered is to what extent such systems may be shared with other species. We examined individual variation in brain connectivity in the context of cognitive abilities in chimpanzees (n = 45) and humans in search of a conserved link between cognition and brain connectivity across the two species. Cognitive scores were assessed on a variety of behavioral tasks using chimpanzee- and human-specific cognitive test batteries, measuring aspects of cognition related to relational reasoning, processing speed, and problem solving in both species. We show that chimpanzees scoring higher on such cognitive skills display relatively strong connectivity among brain networks also associated with comparable cognitive abilities in the human group. We also identified divergence in brain networks that serve specialized functions across humans and chimpanzees, such as stronger language connectivity in humans and relatively more prominent connectivity between regions related to spatial working memory in chimpanzees. Our findings suggest that core neural systems of cognition may have evolved before the divergence of chimpanzees and humans, along with potential differential investments in other brain networks relating to specific functional specializations between the two species
    corecore