3,824 research outputs found

    Bromophenyl functionalization of carbon nanotubes : an ab initio study

    Get PDF
    We study the thermodynamics of bromophenyl functionalization of carbon nanotubes with respect to diameter and metallic/insulating character using density-functional theory (DFT). On one hand, we show that the activation energy for the grafting of a bromophenyl molecule onto a semiconducting zigzag nanotube ranges from 0.73 eV to 0.76 eV without any clear trend with respect to diameter within numerical accuracy. On the other hand, the binding energy of a single bromophenyl molecule shows a clear diameter dependence and ranges from 1.51 eV for a (8,0) zigzag nanotube to 0.83 eV for a (20,0) zigzag nanotube. This is in part explained by the transition from sp2 to sp3 bonding occurring to a carbon atom of a nanotube when a phenyl is grafted to it and the fact that smaller nanotubes are closer to a sp3 hybridization than larger ones due to increased curvature. Since a second bromophenyl unit can attach without energy barrier next to an isolated grafted unit, they are assumed to exist in pairs. The para configuration is found to be favored for the pairs and their binding energy decreases with increasing diameter, ranging from 4.34 eV for a (7,0) nanotube to 2.27 eV for a (29,0) nanotube. An analytic form for this radius dependence is derived using a tight binding hamiltonian and first order perturbation theory. The 1/R^2 dependance obtained (where R is the nanotube radius) is verified by our DFT results within numerical accuracy. Finally, metallic nanotubes are found to be more reactive than semiconducting nanotubes, a feature that can be explained by a non-zero density of states at the Fermi level for metallic nanotubes.Comment: 7 pages, 5 figures and 3 table

    Ground-based optical transmission spectrum of the hot Jupiter HAT-P-1b

    Full text link
    Time-series spectrophotometric studies of exoplanets during transit using ground-based facilities are a promising approach to characterize their atmospheric compositions. We aim to investigate the transit spectrum of the hot Jupiter HAT-P-1b. We compare our results to those obtained at similar wavelengths by previous space-based observations. We observed two transits of HAT-P-1b with the Gemini Multi-Object Spectrograph (GMOS) instrument on the Gemini North telescope using two instrument modes covering the 320 - 800 nm and 520 - 950 nm wavelength ranges. We used time-series spectrophotometry to construct transit light curves in individual wavelength bins and measure the transit depths in each bin. We accounted for systematic effects. We addressed potential photometric variability due to magnetic spots in the planet's host star with long-term photometric monitoring. We find that the resulting transit spectrum is consistent with previous Hubble Space Telescope (HST) observations. We compare our observations to transit spectroscopy models that marginally favor a clear atmosphere. However, the observations are also consistent with a flat spectrum, indicating high-altitude clouds. We do not detect the Na resonance absorption line (589 nm), and our observations do not have sufficient precision to study the resonance line of K at 770 nm. We show that even a single Gemini/GMOS transit can provide constraining power on the properties of the atmosphere of HAT-P-1b to a level comparable to that of HST transit studies in the optical when the observing conditions and target and reference star combination are suitable. Our 520 - 950 nm observations reach a precision comparable to that of HST transit spectra in a similar wavelength range of the same hot Jupiter, HAT-P-1b. However, our GMOS transit between 320 - 800 nm suffers from strong systematic effects and yields larger uncertainties.Comment: A&A, accepted, 16 pages, 8 figures, 5 table

    Two-Timescale Learning Using Idiotypic Behaviour Mediation For A Navigating Mobile Robot

    Get PDF
    A combined Short-Term Learning (STL) and Long-Term Learning (LTL) approach to solving mobile-robot navigation problems is presented and tested in both the real and virtual domains. The LTL phase consists of rapid simulations that use a Genetic Algorithm to derive diverse sets of behaviours, encoded as variable sets of attributes, and the STL phase is an idiotypic Artificial Immune System. Results from the LTL phase show that sets of behaviours develop very rapidly, and significantly greater diversity is obtained when multiple autonomous populations are used, rather than a single one. The architecture is assessed under various scenarios, including removal of the LTL phase and switching off the idiotypic mechanism in the STL phase. The comparisons provide substantial evidence that the best option is the inclusion of both the LTL phase and the idiotypic system. In addition, this paper shows that structurally different environments can be used for the two phases without compromising transferability.Comment: 40 pages, 12 tables, Journal of Applied Soft Computin

    Right vs. left ventricular longitudinal strain for mortality prediction after transcatheter aortic valve implantation

    Get PDF
    INTRODUCTION This study aims at exploring biventricular remodelling and its implications for outcome in a representative patient cohort with severe aortic stenosis (AS) undergoing transcatheter aortic valve implantation (TAVI). METHODS AND RESULTS Pre-interventional echocardiographic examinations of 100 patients with severe AS undergoing TAVI were assessed by speckle tracking echocardiography of both ventricles. Association with mortality was determined for right ventricular global longitudinal strain (RVGLS), RV free wall strain (RVFWS) and left ventricular global longitudinal strain (LVGLS). During a median follow-up of 1,367 [959-2,123] days, 33 patients (33%) died. RVGLS was lower in non-survivors [-13.9% (-16.4 to -12.9)] than survivors [-17.1% (-20.2 to -15.2); P = 0.001]. In contrast, LVGLS as well as the conventional parameters LV ejection fraction (LVEF) and RV fractional area change (RVFAC) did not differ (P = ns). Kaplan-Meier analyses indicated a reduced survival probability when RVGLS was below the -14.6% cutpoint (P < 0.001). Lower RVGLS was associated with higher mortality [HR 1.13 (95% CI 1.04-1.23); P = 0.003] independent of LVGLS, LVEF, RVFAC, and EuroSCORE II. Addition of RVGLS clearly improved the fitness of bivariable and multivariable models including LVGLS, LVEF, RVFAC, and EuroSCORE II with potential incremental value for mortality prediction. In contrast, LVGLS, LVEF, and RVFAC were not associated with mortality. DISCUSSION In patients with severe AS undergoing TAVI, RVGLS but not LVGLS was reduced in non-survivors compared to survivors, differentiated non-survivors from survivors, was independently associated with mortality, and exhibited potential incremental value for outcome prediction. RVGLS appears to be more suitable than LVGLS for risk stratification in AS and timely valve replacement

    Upconversion channels in Er3+:ZBLALiP fluoride glass microspheres

    Get PDF
    We present results on the realization of a multicolour microspherical glass light source fabricated from the erbium doped fluoride glass ZBLALiP. Whispering gallery mode lasing and upconversion processes give rise to laser and fluorescent emissions at multiple wavelengths from the ultraviolet to the infrared. Thirteen discrete emissions ranging from 320 to 849 nm have been observed in the upconversion spectrum. A Judd-Ofelt analysis was performed to calculate the radiative properties of Er3+:ZBLALiP microspheres, including the radiative transition probabilities, the electric dipole strengths, the branching ratios and the radiative lifetimes of the transitions involved. We have also identified the primary processes responsible for the generation of the observed wavelengths and have shown that this material has an improved range of emissions over other erbium doped fluoride glasses

    Climate Change and Biosphere Response: Unlocking the Collections Vault

    No full text
    Natural history collections (NHCs) are an important source of the long-term data needed to understand how biota respond to ongoing anthropogenic climate change. These include taxon occurrence data for ecological modeling, as well as information that can be used to reconstruct mechanisms through which biota respond to changing climates. The full potential of NHCs for climate change research cannot be fully realized until high-quality data sets are conveniently accessible for research, but this requires that higher priority be placed on digitizing the holdings most useful for climate change research (e.g., whole-biota studies, time series, records of intensively sampled common taxa). Natural history collections must not neglect the proliferation of new information from efforts to understand how present-day ecosystems are responding to environmental change. These new directions require a strategic realignment for many NHC holders to complement their existing focus on taxonomy and systematics. To set these new priorities, we need strong partnerships between NHC holders and global change biologists

    Detection of Helium in the Atmosphere of the Exo-Neptune HAT-P-11b

    Get PDF
    The helium absorption triplet at a wavelength of 10,833 \AA\ has been proposed as a way to probe the escaping atmospheres of exoplanets. Recently this feature was detected for the first time using Hubble Space Telescope (HST) WFC3 observations of the hot Jupiter WASP-107b. We use similar HST/WFC3 observations to detect helium in the atmosphere of the hot Neptune HAT-P-11b at the 4σ4\sigma confidence level. We compare our observations to a grid of 1D models of hydrodynamic escape to constrain the thermospheric temperatures and mass loss rate. We find that our data are best fit by models with high mass loss rates of M˙109\dot{M} \approx 10^{9} - 101110^{11} g s1^{-1}. Although we do not detect the planetary wind directly, our data are consistent with the prediction that HAT-P-11b is experiencing hydrodynamic atmospheric escape. Nevertheless, the mass loss rate is low enough that the planet has only lost up to a few percent of its mass over its history, leaving its bulk composition largely unaffected. This matches the expectation from population statistics, which indicate that close-in planets with radii greater than 2 R_{\oplus} form and retain H/He-dominated atmospheres. We also confirm the independent detection of helium in HAT-P-11b obtained with the CARMENES instrument, making this the first exoplanet with the detection of the same signature of photoevaporation from both ground- and space-based facilities.Comment: 12 pages, 9 figures, accepted for publication in ApJ

    Low False-Positive Rate of Kepler Candidates Estimated From A Combination Of Spitzer And Follow-Up Observations

    Get PDF
    (Abridged) NASA's Kepler mission has provided several thousand transiting planet candidates, yet only a small subset have been confirmed as true planets. Therefore, the most fundamental question about these candidates is the fraction of bona fide planets. Estimating the rate of false positives of the overall Kepler sample is necessary to derive the planet occurrence rate. We present the results from two large observational campaigns that were conducted with the Spitzer telescope during the the Kepler mission. These observations are dedicated to estimating the false positive rate (FPR) amongst the Kepler candidates. We select a sub-sample of 51 candidates, spanning wide ranges in stellar, orbital and planetary parameter space, and we observe their transits with Spitzer at 4.5 microns. We use these observations to measures the candidate's transit depths and infrared magnitudes. A bandpass-dependent depth alerts us to the potential presence of a blending star that could be the source of the observed eclipse: a false-positive scenario. For most of the candidates (85%), the transit depths measured with Kepler are consistent with the depths measured with Spitzer as expected for planetary objects, while we find that the most discrepant measurements are due to the presence of unresolved stars that dilute the photometry. The Spitzer constraints on their own yield FPRs between 5-40%, depending on the KOIs. By considering the population of the Kepler field stars, and by combining follow-up observations (imaging) when available, we find that the overall FPR of our sample is low. The measured upper limit on the FPR of our sample is 8.8% at a confidence level of 3 sigma. This observational result, which uses the achromatic property of planetary transit signals that is not investigated by the Kepler observations, provides an independent indication that Kepler's false positive rate is low.Comment: 33 pages, 16 figures, 3 tables; accepted for publication in ApJ on February 7, 201
    corecore