1,781 research outputs found

    Identification of Novel sRNAs in Mycobacterial Species

    Get PDF
    Bacterial small RNAs (sRNAs) are short transcripts that typically do not encode proteins and often act as regulators of gene expression through a variety of mechanisms. Regulatory sRNAs have been identified in many species, including Mycobacterium tuberculosis, the causative agent of tuberculosis. Here, we use a computational algorithm to predict sRNA candidates in the mycobacterial species M. smegmatis and M. bovis BCG and confirmed the expression of many sRNAs using Northern blotting. Thus, we have identified 17 and 23 novel sRNAs in M. smegmatis and M. bovis BCG, respectively. We have also applied a high-throughput technique (Deep-RACE) to map the 5′ and 3′ ends of many of these sRNAs and identified potential regulators of sRNAs by analysis of existing ChIP-seq datasets. The sRNAs identified in this work likely contribute to the unique biology of mycobacteria

    Gas phase characterization of the noncovalent quaternary structure of Cholera toxin and the Cholera toxin B subunit pentamer

    Get PDF
    Cholera toxin (CTx) is an AB5 cytotonic protein that has medical relevance in cholera and as a novel mucosal adjuvant. Here, we report an analysis of the noncovalent homopentameric complex of CTx B chain (CTx B5) using electrospray ionization triple quadrupole mass spectrometry and tandem mass spectrometry and the analysis of the noncovalent hexameric holotoxin usingelectrospray ionization time-of-flight mass spectrometry over a range of pH values that correlate with those encountered by this toxin after cellular uptake. We show that noncovalent interactions within the toxin assemblies were maintained under both acidic and neutral conditions in the gas phase. However, unlike the related Escherichia coli Shiga-like toxin B5 pentamer (SLTx B), the CTx B5 pentamer was stable at low pH, indicating that additional interactions must be present within the latter. Structural comparison of the CTx B monomer interface reveals an additional α-helix that is absent in the SLTx B monomer. In silico energy calculations support interactions between this helix and the adjacent monomer. These data provide insight into the apparent stabilization of CTx B relative to SLTx B

    Cyclic AMP-specific phosphodiesterase, PDE8A1, is activated by protein kinase A-mediated phosphorylation

    Get PDF
    The cyclic AMP-specific phosphodiesterase PDE8 has been shown to play a pivotal role in important processes such as steroidogenesis, T cell adhesion, regulation of heart beat and chemotaxis. However, no information exists on how the activity of this enzyme is regulated. We show that under elevated cAMP conditions, PKA acts to phosphorylate PDE8A on serine 359 and this action serves to enhance the activity of the enzyme. This is the first indication that PDE8 activity can be modulated by a kinase, and we propose that this mechanism forms a feedback loop that results in the restoration of basal cAMP levels. (C) 2012 Federation of European Biochemical Societies. Published by Elsevier B. V. All rights reserve

    Pulsed Feedback Defers Cellular Differentiation

    Get PDF
    Environmental signals induce diverse cellular differentiation programs. In certain systems, cells defer differentiation for extended time periods after the signal appears, proliferating through multiple rounds of cell division before committing to a new fate. How can cells set a deferral time much longer than the cell cycle? Here we study Bacillus subtilis cells that respond to sudden nutrient limitation with multiple rounds of growth and division before differentiating into spores. A well-characterized genetic circuit controls the concentration and phosphorylation of the master regulator Spo0A, which rises to a critical concentration to initiate sporulation. However, it remains unclear how this circuit enables cells to defer sporulation for multiple cell cycles. Using quantitative time-lapse fluorescence microscopy of Spo0A dynamics in individual cells, we observed pulses of Spo0A phosphorylation at a characteristic cell cycle phase. Pulse amplitudes grew systematically and cell-autonomously over multiple cell cycles leading up to sporulation. This pulse growth required a key positive feedback loop involving the sporulation kinases, without which the deferral of sporulation became ultrasensitive to kinase expression. Thus, deferral is controlled by a pulsed positive feedback loop in which kinase expression is activated by pulses of Spo0A phosphorylation. This pulsed positive feedback architecture provides a more robust mechanism for setting deferral times than constitutive kinase expression. Finally, using mathematical modeling, we show how pulsing and time delays together enable “polyphasic” positive feedback, in which different parts of a feedback loop are active at different times. Polyphasic feedback can enable more accurate tuning of long deferral times. Together, these results suggest that Bacillus subtilis uses a pulsed positive feedback loop to implement a “timer” that operates over timescales much longer than a cell cycle

    The network topology of a potential energy landscape: A static scale-free network

    Full text link
    Here we analyze the topology of the network formed by the minima and transition states on the potential energy landscape of small clusters. We find that this network has both a small-world and scale-free character. In contrast to other scale-free networks, where the topology results from the dynamics of the network growth, the potential energy landscape is a static entity. Therefore, a fundamentally different organizing principle underlies this behaviour: The potential energy landscape is highly heterogeneous with the low-energy minima having large basins of attraction and acting as the highly-connected hubs in the network.Comment: 4 pages, 4 figures, revtex

    Coupled pre-mRNA and mRNA dynamics unveil operational strategies underlying transcriptional responses to stimuli

    Get PDF
    Genome-wide simultaneous measurements of pre-mRNA and mRNA expression reveal unexpected time-dependent transcript production and degradation profiles in response to external stimulus, as well as a striking lack of concordance between mRNA abundance and transcript production profiles

    New Tetrahedral Global Minimum for the 98-atom Lennard-Jones Cluster

    Full text link
    A new atomic cluster structure corresponding to the global minimum of the 98-atom Lennard-Jones cluster has been found using a variant of the basin-hopping global optimization algorithm. The new structure has an unusual tetrahedral symmetry with an energy of -543.665361, which is 0.022404 lower than the previous putative global minimum. The new LJ_98 structure is of particular interest because its tetrahedral symmetry establishes it as one of only three types of exceptions to the general pattern of icosahedral structural motifs for optimal LJ microclusters. Similar to the other exceptions the global minimum is difficult to find because it is at the bottom of a narrow funnel which only becomes thermodynamically most stable at low temperature.Comment: 3 pages, 2 figures, revte

    Colorectal cancer in patients of advanced age is associated with increased incidence of BRAF p.V600E mutation and mismatch repair deficiency

    Get PDF
    IntroductionThe highest incidence of colorectal cancer (CRC) is in patients diagnosed at 80 years or older highlighting a need for understanding the clinical and molecular features of these tumors. Methods. In this retrospective cohort study, 544 CRCs underwent next generation sequencing and mismatch repair (MMR) evaluation. Molecular and clinical features were compared between 251 patients with traditional-onset CRC (50-69 years at diagnosis) and 60 with late-onset CRC (>80 years at diagnosis).ResultsLate-onset CRC showed a significantly higher rate of right-sided tumors (82% vs 35%), MMR deficiency (35% vs. 8%) and BRAF p.V600E mutations (35% vs. 8%) and a significantly lower rate of stage IV disease (15% vs 28%) and APC mutations (52% vs. 78%). Association of these features with advanced age was supported by stratifying patients into 6 age groups (<40, 40-49, 50-59, 60-69, 70-79 and >80 years). However, the age-related rise in MMR deficient (dMMR) CRC was only seen in the female patients with an incidence of 48% (vs. 10% in the male patient) in the >80y group. In addition, BRAF p.V600E was significantly enriched in MMR deficient CRC of advanced age (67% in late-onset CRC). Categorizing CRC by mutational profiling, late-onset CRC revealed a significantly higher rate of dMMR/BRAF+APC- (18% vs. 2.0%), dMMR/BRAF-APC- (8.3% vs. 1.2%) and MMR proficient (pMMR)/BRAF+APC- (12% vs. 4.0%) as compared to traditional-onset CRC.DiscussionIn summary, there was a higher rate of dMMR and BRAF p.V600E in late-onset CRC, independently or in combination. The higher incidence of dMMR in late-onset CRC in females is most likely predominantly driven by BRAF p.V600E induced hypermethylation. Prospective studies with treatment plans designed specifically for these older patients are warranted to improve their outcomes
    corecore