15 research outputs found

    Genetic structure of Anopheles gambiae populations on islands in northwestern Lake Victoria, Uganda

    Get PDF
    BACKGROUND: Alternative means of malaria control are urgently needed. Evaluating the effectiveness of measures that involve genetic manipulation of vector populations will be facilitated by identifying small, genetically isolated vector populations. The study was designed to use variation in microsatellite markers to look at genetic structure across four Lake Victoria islands and two surrounding mainland populations and for evidence of any restriction to free gene flow. METHODS: Four Islands (from 20–50 km apart) and two surrounding mainland populations (96 km apart) were studied. Samples of indoor resting adult mosquitoes, collected over two consecutive years, were genotyped at microsatellite loci distributed broadly throughout the genome and analysed for genetic structure, effective migration (Nem) and effective population size (Ne). RESULTS: Ne estimates showed island populations to consist of smaller demes compared to the mainland ones. Most populations were significantly differentiated geographically, and from one year to the other. Average geographic pair-wise FST ranged from 0.014–0.105 and several pairs of populations had Ne m < 3. The loci showed broad heterogeneity at capturing or estimating population differences. CONCLUSION: These island populations are significantly genetically differentiated. Differences reoccurred over the study period, between the two mainland populations and between each other. This appears to be the product of their separation by water, dynamics of small populations and local adaptation. With further characterisation these islands could become possible sites for applying measures evaluating effectiveness of control by genetic manipulation

    Intrapatient Evolutionary Dynamics of Human Immunodeficiency Virus Type 1 in Individuals Undergoing Alternative Treatment Strategies with Reverse Transcriptase Inhibitors.

    Get PDF
    Structured treatment interruption (STI) has been trialed as an alternative to lifelong antiretroviral therapy (ART). We retrospectively performed single genome sequencing of the HIV-1 pol region from three patients representing different scenarios. They were either failing on continuous therapy (CT-F), failing STI (STI-F), or suppressing on STI (STI-S). Over 460 genomes were generated from three to five different time points over a 2-year period. We found multiple-linked-resistant mutations in both treatment failures. However, the CT-F patient showed a stepwise accumulation of diverse, linked mutations whereas the STI-F patient had lineage turnover between treatment periods with recirculation of wild-type and resistant variants from reservoirs. The STI-F patient showed a 7-fold increase in the third codon position substitution rate relative to the first and second positions compared to a 2-fold increase for CT-F and increased purifying selection in the pol gene (62 vs. 22 sites, respectively). An understanding of intrapatient viral dynamics could guide the future direction of treatment interruption strategies

    The H3ABioNet helpdesk: an online bioinformatics resource, enhancing Africa’s capacity for genomics research

    Get PDF
    Abstract Background Currently, formal mechanisms for bioinformatics support are limited. The H3Africa Bioinformatics Network has implemented a public and freely available Helpdesk (HD), which provides generic bioinformatics support to researchers through an online ticketing platform. The following article reports on the H3ABioNet HD (H3A-HD)‘s development, outlining its design, management, usage and evaluation framework, as well as the lessons learned through implementation. Results The H3A-HD evaluated using automatically generated usage logs, user feedback and qualitative ticket evaluation. Evaluation revealed that communication methods, ticketing strategies and the technical platforms used are some of the primary factors which may influence the effectivity of HD. Conclusion To continuously improve the H3A-HD services, the resource should be regularly monitored and evaluated. The H3A-HD design, implementation and evaluation framework could be easily adapted for use by interested stakeholders within the Bioinformatics community and beyond

    The effect of HIV on morbidity and mortality in children with severe malarial anaemia

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Malaria and HIV are common causes of mortality in sub-Saharan Africa. The effect of HIV infection on morbidity and mortality in children with severe malarial anaemia was assessed.</p> <p>Methods</p> <p>Children <5 years old were followed as part of a prospective cohort study to assess the transfusion-associated transmission of blood-borne pathogens at Mulago Hospital, Kampala, Uganda. All children were hospitalized with a diagnosis of severe malarial anaemia requiring blood transfusion. Survival to different time points post-transfusion was compared between HIV-infected and uninfected children. Generalized estimating equations were used to analyse repeated measurement outcomes of morbidity, adjusting for confounders.</p> <p>Findings</p> <p>Of 847 children, 78 (9.2%) were HIV-infected. Median follow-up time was 162 days (inter-quartile range: 111, 169). HIV-infected children were more likely to die within 7 days (Hazard ratio [HR] = 2.86, 95% Confidence interval [CI] 1.30–6.29, P = 0.009) and within 28 days (HR = 3.70, 95% CI 1.91–7.17, P < 0.001) of an episode of severe malarial anaemia, and were more likely to die in the 6 months post-transfusion (HR = 5.70, 95% CI 3.54–9.16, P < 0.001) compared to HIV-uninfected children. HIV-infected children had more frequent re-admissions due to malaria within 28 days (Incidence rate ratio (IRR) = 3.74, 95% CI 1.41–9.90, P = 0.008) and within 6 months (IRR = 2.66, 95% CI 1.17 – 6.07, P = 0.02) post-transfusion than HIV-uninfected children.</p> <p>Conclusion</p> <p>HIV-infected children with severe malarial anaemia suffered higher all-cause mortality and malaria-related mortality than HIV-uninfected children. Children with HIV and malaria should receive aggressive treatment and further evaluation of their HIV disease, particularly with regard to cotrimoxazole prophylaxis and antiretroviral therapy.</p

    Development of Bioinformatics Infrastructure for Genomics Research:

    Get PDF
    Although pockets of bioinformatics excellence have developed in Africa, generally, large-scale genomic data analysis has been limited by the availability of expertise and infrastructure. H3ABioNet, a pan-African bioinformatics network, was established to build capacity specifically to enable H3Africa (Human Heredity and Health in Africa) researchers to analyze their data in Africa. Since the inception of the H3Africa initiative, H3ABioNet's role has evolved in response to changing needs from the consortium and the African bioinformatics community

    Attributes of Anopheles gambiae swarms in South Central Uganda

    No full text
    Abstract Background Anopheles gambiae continues to be widespread and an important malaria vector species complex in Uganda. New approaches to malaria vector control are being explored including population suppression through swarm reductions and genetic modification involving gene drives. Designing and evaluating these new interventions require good understanding of the biology of the target vectors. Anopheles mosquito swarms have historically been hard to locate in Uganda and therefore have remained poorly characterized. In this study we sought to identify and characterize An. gambiae s.l mosquito swarms in three study sites of high An. gambiae s.l prevalence within Central Uganda. Methods Nine sampling visits were made to three villages over a 2-year period. Sampling targeted both wet and dry seasons and was done for 2 days per village during each trip, using sweep nets. All swarm data were analysed using the JMP 14 software (SAS Institute, Inc., Cary, NC, USA), parametrically or non-parametrically as appropriate. Results Most of the An. gambiae s.s. swarms sampled during this study were single-species swarms. However, some mixed An. gambiae s.s. and Culex spp. mosquito swarms were also observed. Swarms were larger in the wet season than in the dry season. Mean swarm height ranged from 2.16 m to 3.13 m off the ground and only varied between villages but not by season. Anopheles gambiae mosquitoes were present in all three villages, preferred to swarm over bare ground markers, and could be effectively sampled by field samplers. Conclusions This study demonstrated that An. gambiae s.l swarms could be effectively located and sampled in South Central Uganda and provided in-depth descriptions of hitherto poorly understood aspects of An. gambiae local swarm characteristics. Swarms were found close to inhabited households and were greater in size and number during the rainy season. Anopheles gambiae s.s swarms were significantly associated with bare ground markers and were sometimes at heights over 4 m above the ground, showing a necessity to develop tools suitable for swarm sampling at these heights. While mixed species swarms have been reported before elsewhere, this is the first documented instance of mixed genus swarms found in Uganda and should be studied further as it could have implications for swarm sampling explorations where multiple species of mosquitoes exist. Graphical Abstrac

    A review of applications and limitations of using aquatic macroinvertebrate predators for biocontrol of the African malaria mosquito, Anopheles gambiae sensu lato

    No full text
    Abstract Macroinvertebrate predators such as backswimmers (Heteroptera: Notonectidae), dragonflies (Odonata: Aeshnidae), and predatory diving beetles (Coleoptera: Dytiscidae) naturally inhabit aquatic ecosystems. Some aquatic ecosystems inhabited by these macroinvertebrate predator taxa equally form malaria vector larval habitats. The presence of these predators in malaria vector larval habitats can negatively impact on development, adult body size, fecundity, and longevity of the malaria vectors, which form important determinants of their fitness and future vectorial capacity. These potential negative impacts caused by aquatic macroinvertebrate predators on malaria vectors warrant their consideration as biocontrol agents in an integrated program to combat malaria. However, the use of these macroinvertebrate predators in malaria biocontrol is currently constrained by technical bottlenecks linked to their generalist predatory tendencies and often long life cycles, demanding complex rearing systems. We reviewed the literature on the use of aquatic macroinvertebrate predators for biocontrol of malaria vectors from the An. gambiae s.l. complex. The available information from laboratory and semi-field studies has shown that aquatic macroinvertebrates have the potential to consume large numbers of mosquito larvae and could thus offer an additional approaches in integrated malaria vector management strategies. The growing number of semi-field structures available in East and West Africa provides an opportunity to conduct ecological experimental studies to reconsider the potential of using aquatic macroinvertebrate predators as a biocontrol tool. To achieve a more sustainable approach to controlling malaria vector populations, additional, non-chemical interventions could provide a more sustainable approach, in comparison with the failing chemical control tools, and should be urgently considered for integration with the current mosquito vector control campaigns. Graphical Abstrac

    Spatio-temporal genetic structure of Anopheles gambiae in the Northwestern Lake Victoria Basin, Uganda: implications for genetic control trials in malaria endemic regions

    No full text
    Abstract Background Understanding population genetic structure in the malaria vector Anopheles gambiae (s.s.) is crucial to inform genetic control and manage insecticide resistance. Unfortunately, species characteristics such as high nucleotide diversity, large effective population size, recent range expansion, and high dispersal ability complicate the inference of genetic structure across its range in sub-Saharan Africa. The ocean, along with the Great Rift Valley, is one of the few recognized barriers to gene flow in this species, but the effect of inland lakes, which could be useful sites for initial testing of genetic control strategies, is relatively understudied. Here we examine Lake Victoria as a barrier between the Ugandan mainland and the Ssese Islands, which lie up to 60 km offshore. We use mitochondrial DNA (mtDNA) from populations sampled in 2002, 2012 and 2015, and perform Bayesian cluster analysis on mtDNA combined with microsatellite data previously generated from the same 2002 mosquito DNA samples. Results Hierarchical analysis of molecular variance and Bayesian clustering support significant differentiation between the mainland and lacustrine islands. In an mtDNA haplotype network constructed from this and previous data, haplotypes are shared even between localities separated by the Rift Valley, a result that more likely reflects retention of shared ancestral polymorphism than contemporary gene flow. Conclusions The relative genetic isolation of An. gambiae on the Ssese Islands, their small size, level terrain and ease of access from the mainland, the relative simplicity of the vectorial system, and the prevalence of malaria, are all attributes that recommend these islands as possible sites for the testing of genetic control strategies

    Data from: Spatio-temporal genetic structure of Anopheles gambiae in the Northwestern Lake Victoria Basin, Uganda: implications for genetic control trials in malaria endemic regions

    No full text
    Background: Understanding population genetic structure in the malaria vector Anopheles gambiae (s.s.) is crucial to inform genetic control and manage insecticide resistance. Unfortunately, species characteristics such as high nucleotide diversity, large effective population size, recent range expansion, and high dispersal ability complicate the inference of genetic structure across its range in sub-Saharan Africa. The ocean, along with the Great Rift Valley, is one of the few recognized barriers to gene flow in this species, but the effect of inland lakes, which could be useful sites for initial testing of genetic control strategies, is relatively understudied. Here we examine Lake Victoria as a barrier between the Ugandan mainland and the Ssese Islands, which lie up to 60 km offshore. We use mitochondrial DNA (mtDNA) from populations sampled in 2002, 2012 and 2015, and perform Bayesian cluster analysis on mtDNA combined with microsatellite data previously generated from the same 2002 mosquito DNA samples. Results: Hierarchical analysis of molecular variance and Bayesian clustering support significant differentiation between the mainland and lacustrine islands. In an mtDNA haplotype network constructed from this and previous data, haplotypes are shared even between localities separated by the Rift Valley, a result that more likely reflects retention of shared ancestral polymorphism than contemporary gene flow. Conclusions: The relative genetic isolation of An. gambiae on the Ssese Islands, their small size, level terrain and ease of access from the mainland, the relative simplicity of the vectorial system, and the prevalence of malaria, are all attributes that recommend these islands as possible sites for the testing of genetic control strategies
    corecore