894 research outputs found

    The evolutionary state of short-period magnetic white dwarf binaries

    Get PDF
    We present phase-resolved spectroscopy of two new short-period low accretion rate magnetic binaries, SDSS J125044.42+154957.3 (Porb= 86 min) and SDSS J151415.65+074446.5 (Porb= 89 min). Both systems were previously identified as magnetic white dwarfs from the Zeeman splitting of the Balmer absorption lines in their optical spectra. Their spectral energy distributions exhibit a large near-infrared excess, which we interpret as a combination of cyclotron emission and possibly a late-type companion star. No absorption features from the companion are seen in our optical spectra. We derive the orbital periods from a narrow, variable HÎą emission line which we show to originate on the companion star. The high radial velocity amplitude measured in both systems suggests a high orbital inclination, but we find no evidence for eclipses in our data. The two new systems resemble the polar EF Eri in its prolonged low state and also SDSS J121209.31+013627.7, a known magnetic white dwarf plus possible brown dwarf binary, which was also recovered by our method

    Development of Smartphone-based ECL Sensor for Dopamine Detection: Practical Approaches

    Get PDF
    In this work, a compact, mobile phone-based ECL sensor apparatus was developed using the phone cameras, screen-printed electrodes (SPE), and mobile app for dopamine detection. Methods of DC voltage application for ECL reaction were comprehensively studied from the mobile phone itself or external power. Under optimized sensing conditions, with disposable carbon SPE and 20 mM coreactant tri-n-propylamine (TPrA), acceptable repeatability and reproducibility were achieved in terms of relative standard deviation (RSD) of intra- and interassays, which were 6.7 and 5.5%, respectively. The biochemical compound dopamine was measured due to its ECL quenching characteristics and its clinical importance. The quenching mechanism of Ru(bpy)32+/TPrA by dopamine was investigated based on the estimation of the constants of the Stern-Volmer equations. The linear range for detectable dopamine concentration was from 1.0 to 50 μM (R2 = 0.982). As the developed mobile phone-based ECL sensor is simple, small and assembled from low-cost components, it offers new opportunities for the development of inexpensive analytical methods and compact sensors

    Developing effective practice learning for tomorrow's social workers

    Get PDF
    This paper considers some of the changes in social work education in the UK, particularly focusing on practice learning in England. The changes and developments are briefly identified and examined in the context of what we know about practice learning. The paper presents some findings from a small scale qualitative study of key stakeholders involved in practice learning and education in social work and their perceptions of these anticipated changes, which are revisited at implementation. The implications for practice learning are discussed

    A Study of the Diverse T Dwarf Population Revealed by WISE

    Full text link
    We report the discovery of 87 new T dwarfs uncovered with the Wide-field Infrared Survey Explorer (WISE) and three brown dwarfs with extremely red near-infrared colors that exhibit characteristics of both L and T dwarfs. Two of the new T dwarfs are likely binaries with L7+/-1 primaries and mid-type T secondaries. In addition, our follow-up program has confirmed 10 previously identified T dwarfs and four photometrically-selected L and T dwarf candidates in the literature. This sample, along with the previous WISE discoveries, triples the number of known brown dwarfs with spectral types later than T5. Using the WISE All-Sky Source Catalog we present updated color-color and color-type diagrams for all the WISE-discovered T and Y dwarfs. Near-infrared spectra of the new discoveries are presented, along with spectral classifications. To accommodate later T dwarfs we have modified the integrated flux method of determining spectral indices to instead use the median flux. Furthermore, a newly defined J-narrow index differentiates the early-type Y dwarfs from late-type T dwarfs based on the J-band continuum slope. The K/J indices for this expanded sample show that 32% of late-type T dwarfs have suppressed K-band flux and are blue relative to the spectral standards, while only 11% are redder than the standards. Comparison of the Y/J and K/J index to models suggests diverse atmospheric conditions and supports the possible re-emergence of clouds after the L/T transition. We also discuss peculiar brown dwarfs and candidates that were found not to be substellar, including two Young Stellar Objects and two Active Galactic Nuclei. The coolest WISE-discovered brown dwarfs are the closest of their type and will remain the only sample of their kind for many years to come.Comment: Accepted to ApJS on 15 January 2013; 99 pages in preprint format, 30 figures, 12 table

    Protein aggregation mediates stoichiometry of protein complexes in aneuploid cells

    Get PDF
    Aneuploidy, a condition characterized by chromosome gains and losses, causes reduced fitness and numerous cellular stresses, including increased protein aggregation. Here, we identify protein complex stoichiometry imbalances as a major cause of protein aggregation in aneuploid cells. Subunits of protein complexes encoded on excess chromosomes aggregate in aneuploid cells, which is suppressed when expression of other subunits is coordinately altered. We further show that excess subunits are either degraded or aggregate and that protein aggregation is nearly as effective as protein degradation at lowering levels of excess proteins. Our study explains why proteotoxic stress is a universal feature of the aneuploid state and reveals protein aggregation as a form of dosage compensation to cope with disproportionate expression of protein complex subunits

    Confirming the Primarily Smooth Structure of the Vega Debris Disk at Millimeter Wavelengths

    Get PDF
    Clumpy structure in the debris disk around Vega has been previously reported at millimeter wavelengths and attributed to concentrations of dust grains trapped in resonances with an unseen planet. However, recent imaging at similar wavelengths with higher sensitivity has disputed the observed structure. We present three new millimeter wavelength observations that help to resolve the puzzling and contradictory observations. We have observed the Vega system with the Submillimeter Array (SMA) at a wavelength of 880 μm and an angular resolution of 5"; with the Combined Array for Research in Millimeter-wave Astronomy (CARMA) at a wavelength of 1.3 mm and an angular resolution of 5"; and with the Green Bank Telescope (GBT) at a wavelength of 3.3 mm and angular resolution of 10". Despite high sensitivity and short baselines, we do not detect the Vega debris disk in either of the interferometric data sets (SMA and CARMA), which should be sensitive at high significance to clumpy structure based on previously reported observations. We obtain a marginal (3σ) detection of disk emission in the GBT data; the spatial distribution of the emission is not well constrained.We analyze the observations in the context of several different models, demonstrating that the observations are consistent with a smooth, broad, axisymmetric disk with inner radius 20–100 AU and width ≾50 AU. The interferometric data require that at least half of the 860 μm emission detected by previous single-dish observations with the James Clerk Maxwell Telescope be distributed axisymmetrically, ruling out strong contributions from flux concentrations on spatial scales of ≾100 AU. These observations support recent results from the Plateau de Bure Interferometer indicating that previous detections of clumpy structure in the Vega debris disk were spurious

    The Stellar Population of h and chi Persei: Cluster Properties, Membership, and the Intrinsic Colors and Temperatures of Stars

    Full text link
    (Abridged) From photometric observations of ∼\sim 47,000 stars and spectroscopy of ∼\sim 11,000 stars, we describe the first extensive study of the stellar population of the famous Double Cluster, h and χ\chi Persei, down to subsolar masses. Both clusters have E(B-V) ∼\sim 0.52--0.55 and dM = 11.8--11.85; the halo population, while more poorly constrained, likely has identical properties. As determined from the main sequence turnoff, the luminosity of M supergiants, and pre-main sequence isochrones, ages for h Persei, χ\chi Persei and the halo population all converge on ≈\approx 14 Myr. From these data, we establish the first spectroscopic and photometric membership lists of cluster stars down to early/mid M dwarfs. At minimum, there are ∼\sim 5,000 members within 10' of the cluster centers, while the entire h and χ\chi Persei region has at least ∼\sim 13,000 and as many as 20,000 members. The Double Cluster contains ≈\approx 8,400 M⊙_{\odot} of stars within 10' of the cluster centers. We estimate a total mass of at least 20,000 M⊙_{\odot}. We conclude our study by outlining outstanding questions regarding the properties of h and χ\chi Persei. From comparing recent work, we compile a list of intrinsic colors and derive a new effective temperature scale for O--M dwarfs, giants, and supergiants.Comment: 88 pages, many figures, Accepted for publication in The Astrophysical Journal Supplements. Contact lead author for version with high-resolution figure
    • …
    corecore