2,263 research outputs found

    Functional analysis of a putative membrane-bound endo-β-1,4-glucanase from Panicum virgatum

    Get PDF
    Cellulose is the most abundant carbohydrate in the world and is degraded by the synergistic action of multiple enzymes. One large family of enzymes capable of hydrolyzing cellulose is glycoside hydrolase family 9 (GH9), which includes several endoglucanases. Recent research into the molecular biology of plants has revealed certain genes coding for endo-β-1,4-glucanases (EGases). The EGases in plants are primarily functional during cell elongation through wall stress relaxation. GH9 enzymes have been found in insects, bacteria, oomycetes, and fungi. In insects, EGases enable the organism to digest cellulose; in fungi, EGases are suspected to play an important role in obtaining nutrition for the fungi and may be associated with defense mechanisms. In these systems, EGases play an important role in breaking the internal bonds of cellulose resulting in a disruption of the crystalline structure. EGases are able to cleave cellulose at the β-1,4 linkages in the cellulose chain with a net inversion of anomeric configuration. A putative EGase from switchgrass (Panicum virgatum) was isolated from leaf cDNA. This gene of interest was cloned into Escherichia coli via the pET160 expression system. Selection by antibiotic resistance confirmed transformation of E. coli. Protein expression was detected via SDS-PAGE and tested to confirm cellulose lysing. The optimal pH and temperature were determined using 3,5-Dinitrosalycilic acid (DNSA) assay at different pH and temperature settings measuring reduced sugars released. Functionality in plants was determined through a gene rescue experiment using Arabidopsis thaliana mutants known to be deficient in putative EGase homologs. Switchgrass containing an overexpression of the EGase was compared to wildtype switchgrass via histology and microscopy. The confirmation of a functional EGase from switchgrass may aid in the development of switchgrass transformants with an amorphous cellulose structure, thereby reducing the amount of resources required during biofuel refinery

    Salsalate treatment improves glycemia without altering adipose tissue in nondiabetic obese hispanics.

    Get PDF
    ObjectiveSalsalate treatment has well-known effects on improving glycemia, and the objective of this study was to examine whether the mechanism of this effect was related to changes in adipose tissue.MethodsA randomized double-blind and placebo-controlled trial in obese Hispanics (18-35 years) was conducted. The intervention consisted of 4 g day(-1) of salsalate (n = 11) versus placebo (n = 13) for 4 weeks. Outcome measures included glycemia, adiposity, ectopic fat, and adipose tissue gene expression and inflammation.ResultsIn those receiving salsalate, plasma fasting glucose decreased by 3.4% (P < 0.01), free fatty acids decreased by 42.5% (P = 0.06), and adiponectin increased by 27.7% (P < 0.01). Salsalate increased insulin AUC by 38% (P = 0.01) and HOMA-B by 47.2% (P < 0.01) while estimates of insulin sensitivity/resistance were unaffected. These metabolic improvements occurred without changes in total, abdominal, visceral, or liver fat. Plasma markers of inflammation/immune activation were unchanged following salsalate. Salsalate had no effects on adipose tissue including adipocyte size, presence of crown-like structures, or gene expression of adipokines, immune cell markers, or cytokines downstream of NF-κB with the exception of downregulation of IL-1β (P < 0.01).ConclusionsFindings suggest that metabolic improvements in response to salsalate occurred without alterations in adiposity, ectopic fat, or adipose tissue gene expression and inflammation

    Rational selection of small molecules that increase transcription through the GAA repeats found in Friedreich’s ataxia

    Get PDF
    AbstractFriedreich’s ataxia (FRDA) is an autosomal recessive trinucleotide repeat disease with no effective therapy. Expanded GAA repeats in the first intron of the FRDA gene are thought to form unusual non-B DNA conformations that decrease transcription and subsequently reduce levels of the encoded protein, frataxin. Frataxin plays a crucial role in iron metabolism and detoxification. To discover small molecules that increase transcription through the GAA repeat region in FRDA, we have made stable cell lines containing a portion of expanded intron 1 fused to a GFP reporter. Small molecules identified using the competition dialysis method were found to increase FRDA-intron 1-reporter gene expression. One of these compounds, pentamidine, increases frataxin levels in patient cells. Thus our approach can be used to detect small molecules of potential therapeutic value in FRDA

    Early myogenic responses to acute exercise before and after resistance training in young men

    Get PDF
    To enable dynamic regulation of muscle mass and myofiber repair following injury, a satellite cell precursor population exists to supply additional nuclei. Activated satellite cells express many genes and associated proteins necessary for maturation and incorporation into the damaged fiber. There is little knowledge about the response of these markers following whole-body resistance exercise training. We investigated the impact of 12 weeks of progressive whole-body resistance training on the expression of MRFs, PAX7, NCAM, and FA1, incorporating both acute and chronic resistance exercise components. Ten young recreationally active males (21.2 ± 3.5 years) performed 12 weeks of whole-body resistance training at 70–85% of their predetermined one-repetition maximum (1RM). At the initiation and completion of the training period, muscular strength was assessed by RM and dynamometer testing, and vastus lateralis samples were obtained prior to and 3 h following an acute resistance exercise test (both whole-body and isometric exercises). Increased mRNA expression of PAX7 (threefold), NCAM (threefold), MYF5 (threefold), MYOD (threefold) and MYOGENIN (twofold) was observed 3 h after the acute resistance exercise test, both pre and posttraining. Similarly, PAX7 (11-fold) and FA1 (twofold) protein abundance increased after acute exercise, while resting NCAM (eightfold) and FA1 (threefold) protein abundance increased following 12 weeks of resistance training. It is possible that these molecular changes are primarily due to the preceding exercise bout, and are not modified by long-term or whole-body exercise training

    Risk score predicts high-grade prostate cancer in DNA-methylation positive, histopathologically negative biopsies.

    Get PDF
    BACKGROUND: Prostate cancer (PCa) diagnosis is challenging because efforts for effective, timely treatment of men with significant cancer typically result in over-diagnosis and repeat biopsies. The presence or absence of epigenetic aberrations, more specifically DNA-methylation of GSTP1, RASSF1, and APC in histopathologically negative prostate core biopsies has resulted in an increased negative predictive value (NPV) of ∼90% and thus could lead to a reduction of unnecessary repeat biopsies. Here, it is investigated whether, in methylation-positive men, DNA-methylation intensities could help to identify those men harboring high-grade (Gleason score ≥7) PCa, resulting in an improved positive predictive value. METHODS: Two cohorts, consisting of men with histopathologically negative index biopsies, followed by a positive or negative repeat biopsy, were combined. EpiScore, a methylation intensity algorithm was developed in methylation-positive men, using area under the curve of the receiver operating characteristic as metric for performance. Next, a risk score was developed combining EpiScore with traditional clinical risk factors to further improve the identification of high-grade (Gleason Score ≥7) cancer. RESULTS: Compared to other risk factors, detection of DNA-methylation in histopathologically negative biopsies was the most significant and important predictor of high-grade cancer, resulting in a NPV of 96%. In methylation-positive men, EpiScore was significantly higher for those with high-grade cancer detected upon repeat biopsy, compared to those with either no or low-grade cancer. The risk score resulted in further improvement of patient risk stratification and was a significantly better predictor compared to currently used metrics as PSA and the prostate cancer prevention trial (PCPT) risk calculator (RC). A decision curve analysis indicated strong clinical utility for the risk score as decision-making tool for repeat biopsy. CONCLUSIONS: Low DNA-methylation levels in PCa-negative biopsies led to a NPV of 96% for high-grade cancer. The risk score, comprising DNA-methylation intensity and traditional clinical risk factors, improved the identification of men with high-grade cancer, with a maximum avoidance of unnecessary repeat biopsies. This risk score resulted in better patient risk stratification and significantly outperformed current risk prediction models such as PCPTRC and PSA. The risk score could help to identify patients with histopathologically negative biopsies harboring high-grade PCa. Prostate 76:1078-1087, 2016. © 2016 The Authors. The Prostate Published by Wiley Periodicals, Inc.MDxHealthThis is the author accepted manuscript. It is currently under an indefinite embargo pending publication by Wiley

    Coordinated regulation of AP2 uncoating from clathrin-coated vesicles by rab5 and hRME-6

    Get PDF
    Here we investigate the role of rab5 and its cognate exchange factors rabex-5 and hRME-6 in the regulation of AP2 uncoating from endocytic clathrin-coated vesicles (CCVs). In vitro, we show that the rate of AP2 uncoating from CCVs is dependent on the level of functional rab5. In vivo, overexpression of dominant-negative rab5S34N, or small interfering RNA (siRNA)–mediated depletion of hRME-6, but not rabex-5, resulted in increased steady-state levels of AP2 associated with endocytic vesicles, which is consistent with reduced uncoating efficiency. hRME-6 guanine nucleotide exchange factor activity requires hRME-6 binding to α-adaptin ear, which displaces the ear-associated μ2 kinase AAK1. siRNA-mediated depletion of hRME-6 increases phospho-μ2 levels, and expression of a phosphomimetic μ2 mutant increases levels of endocytic vesicle-associated AP2. Depletion of hRME-6 or rab5S35N expression also increases the levels of phosphoinositide 4,5-bisphosphate (PtdIns(4,5)P2) associated with endocytic vesicles. These data are consistent with a model in which hRME-6 and rab5 regulate AP2 uncoating in vivo by coordinately regulating μ2 dephosphorylation and PtdIns(4,5)P2 levels in CCVs

    Spacings of Quarkonium Levels with the Same Principal Quantum Number

    Get PDF
    The spacings between bound-state levels of the Schr\"odinger equation with the same principal quantum number NN but orbital angular momenta ℓ\ell differing by unity are found to be nearly equal for a wide range of power potentials V=λrνV = \lambda r^\nu, with ENℓ≈F(ν,N)−G(ν,N)ℓE_{N \ell} \approx F(\nu, N) - G(\nu,N) \ell. Semiclassical approximations are in accord with this behavior. The result is applied to estimates of masses for quarkonium levels which have not yet been observed, including the 2P ccˉc \bar c states and the 1D bbˉb \bar b states.Comment: 20 pages, latex, 3 uuencoded figures submitted separately (process using psfig.sty

    Directed assembly of optically bound matter

    Get PDF
    We present a study of optically bound matter formation in a counter-propagating evanescent field, exploiting total internal reflection on a prism surface. Small ensembles of silica microspheres are assembled in a controlled manner using optical tweezers. The structures and dynamics of the resulting optically bound chains are interpreted using a simulation implementing generalized Lorentz-Mie theory. In particular, we observe enhancement of the scattering force along the propagation direction of the optically bound colloidal chains leading to a microscopic analogue of a driven pendulum which, at least superficially, resembles Newton’s cradle
    • …
    corecore