357 research outputs found

    Evolutionary relationships between Rhynchosporium lolii sp. nov. and other Rhynchosporium species on grass.

    Get PDF
    Copyright: 2013 King et al. This is an open-access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are creditedThe fungal genus Rhynchosporium (causative agent of leaf blotch) contains several host-specialised species, including R. commune (colonising barley and brome-grass), R. agropyri (couch-grass), R. secalis (rye and triticale) and the more distantly related R. orthosporum (cocksfoot). This study used molecular fingerprinting, multilocus DNA sequence data, conidial morphology, host range tests and scanning electron microscopy to investigate the relationship between Rhynchosporium species on ryegrasses, both economically important forage grasses and common wild grasses in many cereal growing areas, and other plant species. Two different types of Rhynchosporium were found on ryegrasses in the UK. Firstly, there were isolates of R. commune that were pathogenic to both barley and Italian ryegrass. Secondly, there were isolates of a new species, here named R. lolii, that were pathogenic only to ryegrass species. R. lolii was most closely related to R. orthosporum, but exhibited clear molecular, morphological and host range differences. The species was estimated to have diverged from R. orthosporum ca. 5735 years before the present. The colonisation strategy of all of the different Rhynchosporium species involved extensive hyphal growth in the sub-cuticular regions of the leaves. Finally, new species-specific PCR diagnostic tests were developed that could distinguish between these five closely related Rhynchosporium species.Peer reviewedFinal Published versio

    Development of ESTs from chickpea roots and their use in diversity analysis of the Cicer genus

    Get PDF
    BACKGROUND: Chickpea is a major crop in many drier regions of the world where it is an important protein-rich food and an increasingly valuable traded commodity. The wild annual Cicer species are known to possess unique sources of resistance to pests and diseases, and tolerance to environmental stresses. However, there has been limited utilization of these wild species by chickpea breeding programs due to interspecific crossing barriers and deleterious linkage drag. Molecular genetic diversity analysis may help predict which accessions are most likely to produce fertile progeny when crossed with chickpea cultivars. While, trait-markers may provide an effective tool for breaking linkage drag. Although SSR markers are the assay of choice for marker-assisted selection of specific traits in conventional breeding populations, they may not provide reliable estimates of interspecific diversity, and may lose selective power in backcross programs based on interspecific introgressions. Thus, we have pursued the development of gene-based markers to resolve these problems and to provide candidate gene markers for QTL mapping of important agronomic traits. RESULTS: An EST library was constructed after subtractive suppressive hybridization (SSH) of root tissue from two very closely related chickpea genotypes (Cicer arietinum). A total of 106 EST-based markers were designed from 477 sequences with functional annotations and these were tested on C. arietinum. Forty-four EST markers were polymorphic when screened across nine Cicer species (including the cultigen). Parsimony and PCoA analysis of the resultant EST-marker dataset indicated that most accessions cluster in accordance with the previously defined classification of primary (C. arietinum, C. echinospermum and C. reticulatum), secondary (C. pinnatifidum, C. bijugum and C. judaicum), and tertiary (C. yamashitae, C. chrossanicum and C. cuneatum) gene-pools. A large proportion of EST alleles (45%) were only present in one or two of the accessions tested whilst the others were represented in up to twelve of the accessions tested. CONCLUSION: Gene-based markers have proven to be effective tools for diversity analysis in Cicer and EST diversity analysis may be useful in identifying promising candidates for interspecific hybridization programs. The EST markers generated in this study have detected high levels of polymorphism amongst both common and rare alleles. This suggests that they would be useful for allele-mining of germplasm collections for identification of candidate accessions in the search for new sources of resistance to pests / diseases, and tolerance to abiotic stresses

    Effects of antiplatelet therapy on stroke risk by brain imaging features of intracerebral haemorrhage and cerebral small vessel diseases: subgroup analyses of the RESTART randomised, open-label trial

    Get PDF
    Background Findings from the RESTART trial suggest that starting antiplatelet therapy might reduce the risk of recurrent symptomatic intracerebral haemorrhage compared with avoiding antiplatelet therapy. Brain imaging features of intracerebral haemorrhage and cerebral small vessel diseases (such as cerebral microbleeds) are associated with greater risks of recurrent intracerebral haemorrhage. We did subgroup analyses of the RESTART trial to explore whether these brain imaging features modify the effects of antiplatelet therapy

    VNTR-based diversity analysis of 2x and 4x full-sib Musa hybrids

    Get PDF
    The triploid plantain landrace Obino l'Ewai (Musa spp., AAB genome) has been crossed with a wild diploid banana (M. acuminata subsp. burmannica var. 'Calcutta 4', AA genome) to generate full-sib diploid and tetraploid hybrids combining good agronomic performance and disease resistance. Microsatellite marker analysis of the parental genotypes confirmed the highly heterozygous nature of both parental genotypes. Comparative analysis of 2x and 4x full-sib hybrids with their parental genotypes indicated that tetraploid hybrids are generally more closely related to Obino l'Ewai than their diploid full-sibs. Based on VNTR analysis it is possible to identify those hybrids, which may be most useful in subsequent breeding of secondary triploid hybrids. There was a significant (P<0.05) negative association between the VNTR-based genetic similarity of hybrids to Obino l'Ewai and a phenotypic distance index based on eight agronomic descriptors. However, there was no association between the molecular genetic similarity of hybrids to Calcutta 4 and the respective phenotypic distance index. Many microsatellite markers generated an unexpectedly high number of amplification products from AA and AAB genotypes plus their progeny which may suggest the presence of a high frequency of loci duplication in both A and B genomes, in addition to the detection of heterozygous and/or homoeologous loci

    Comparing Surface and Intramuscular Electromyography for Simultaneous and Proportional Control Based on a Musculoskeletal Model: A Pilot Study

    Get PDF
    Simultaneous and proportional control (SPC) of neural-machine interfaces uses magnitudes of smoothed electromyograms (EMG) as control inputs. Though surface EMG (sEMG) electrodes are common for clinical neural-machine interfaces, intramuscular EMG (iEMG) electrodes may be indicated in some circumstances (e.g., for controlling many degrees of freedom). However, differences in signal characteristics between sEMG and iEMG may influence SPC performance. We conducted a pilot study to determine the effect of electrode type (sEMG and iEMG) on real-time task performance with SPC based on a novel 2-degree-of-freedom EMG-driven musculoskeletal model of the wrist and hand. Four able-bodied subjects and one transradial amputee performed a virtual posture matching task with either sEMG or iEMG. There was a trend of better task performance with sEMG than iEMG for both able-bodied and amputee subjects, though the difference was not statistically significant. Thus, while iEMG may permit targeted recording of EMG, its signal characteristics may not be as ideal for SPC as those of sEMG. The tradeoff between recording specificity and signal characteristics is an important consideration for development and clinical implementation of SPC for neural-machine interfaces

    Analysis of genomic sequences from peanut (Arachis hypogaea)

    Full text link

    Perspectives on the application of biotechnology to assist the genetic enhancement of plantain and banana ( Musa spp.)

    Get PDF
    Bananas and plantains ( Musa spp.) are the most important tropical fruit crops. They form an integral component of the farming systems in the humid agroecological zones of the tropics. A broad array of applied cell and molecular techniques are increasingly being used worldwide to facilitate and enhance the handling and improvement of plantain and banana germplasm. Tissue culture is used for germplasm exchange, conservation and rapid multiplication, while in vitro seed germination (based on embryo culture or rescue) plays a critical role in generating hybrid plants. DNA marker systems have been developed in Musa to assist germplasm management, selection within the breeding pool or gene introgression from wild species, and for disease diagnosis. Likewise, genetic transformation using the particle gun method or through Agrobacterium co-cultivation shows potential for the genetic betterment of the crop. This article discusses the applications of biotechnology for the genetic enhancement of banana and plantain. It highlights current advances by research teams across the world and reviews progress in molecular breeding of Musa by the International Institute of Tropical Agriculture and its collaborators
    corecore