143 research outputs found

    A Logical Model Provides Insights into T Cell Receptor Signaling

    Get PDF
    Cellular decisions are determined by complex molecular interaction networks. Large-scale signaling networks are currently being reconstructed, but the kinetic parameters and quantitative data that would allow for dynamic modeling are still scarce. Therefore, computational studies based upon the structure of these networks are of great interest. Here, a methodology relying on a logical formalism is applied to the functional analysis of the complex signaling network governing the activation of T cells via the T cell receptor, the CD4/CD8 co-receptors, and the accessory signaling receptor CD28. Our large-scale Boolean model, which comprises 94 nodes and 123 interactions and is based upon well-established qualitative knowledge from primary T cells, reveals important structural features (e.g., feedback loops and network-wide dependencies) and recapitulates the global behavior of this network for an array of published data on T cell activation in wild-type and knock-out conditions. More importantly, the model predicted unexpected signaling events after antibody-mediated perturbation of CD28 and after genetic knockout of the kinase Fyn that were subsequently experimentally validated. Finally, we show that the logical model reveals key elements and potential failure modes in network functioning and provides candidates for missing links. In summary, our large-scale logical model for T cell activation proved to be a promising in silico tool, and it inspires immunologists to ask new questions. We think that it holds valuable potential in foreseeing the effects of drugs and network modifications

    Signal Transduction in the Footsteps of Goethe and Schiller

    Get PDF
    The historical town of Weimar in Thuringia, the "green heart of Germany" was the sphere of Goethe and Schiller, the two most famous representatives of German literature's classic era. Not yet entirely as influential as those two cultural icons, the Signal Transduction Society (STS) has nevertheless in the last decade established within the walls of Weimar an annual interdisciplinary Meeting on "Signal Transduction – Receptors, Mediators and Genes", which is well recognized as a most attractive opportunity to exchange results and ideas in the field

    Phosphoprotein Associated with Glycosphingolipid-Enriched Microdomains Differentially Modulates Src Kinase Activity in Brain Maturation

    Get PDF
    Src family kinases (SFK) control multiple processes during brain development and function. We show here that the phosphoprotein associated with glycosphigolipid-enriched microdomains (PAG)/Csk binding protein (Cbp) modulates SFK activity in the brain. The timing and localization of PAG expression overlap with Fyn and Src, both of which we find associated to PAG. We demonstrate in newborn (P1) mice that PAG negatively regulates Src family kinases (SFK). P1 Pag1-/- mouse brains show decreased recruitment of Csk into lipid rafts, reduced phosphorylation of the inhibitory tyrosines within SFKs, and an increase in SFK activity of >/ = 50%. While in brain of P1 mice, PAG and Csk are highly and ubiquitously expressed, little Csk is found in adult brain suggesting altered modes of SFK regulation. In adult brain Pag1-deficiency has no effect upon Csk-distribution or inhibitory tyrosine phosphorylation, but kinase activity is now reduced (−20–30%), pointing to the development of a compensatory mechanism that may involve PSD93. The distribution of the Csk-homologous kinase CHK is not altered. Importantly, since the activities of Fyn and Src are decreased in adult Pag1-/- mice, thus presenting the reversed phenotype of P1, this provides the first in vivo evidence for a Csk-independent positive regulatory function for PAG in the brain

    System Engineering Paper

    Get PDF
    The Iowa State University team, Team LunaCY, is composed of the following sub-teams: the main student organization, the Lunabotics Club; a senior mechanical engineering design course, ME 415; a senior multidisciplinary design course, ENGR 466; and a senior design course from Wartburg College in Waverly, Iowa. Team LunaCY designed and fabricated ART-E III, Astra Robotic Tractor- Excavator the Third, for the team's third appearance in the NASA Lunabotic Mining competition. While designing ART-E III, the team had four main goals for this year's competition:to reduce the total weight of the robot, to increase the amount of regolith simulant mined, to reduce dust, and to make ART-E III autonomous. After many designs and research, a final robot design was chosen that obtained all four goals of Team LunaCY. A few changes Team LunaCY made this year was to go to the electrical, computer, and software engineering club fest at Iowa State University to recruit engineering students to accomplish the task of making ART-E III autonomous. Team LunaCY chose to use LabView to program the robot and various sensors were installed to measure the distance between the robot and the surroundings to allow ART-E III to maneuver autonomously. Team LunaCY also built a testing arena to test prototypes and ART-E III in. To best replicate the competition arena at the Kennedy Space Center, a regolith simulant was made from sand, QuickCrete, and fly ash to cover the floor of the arena. Team LunaCY also installed fans to allow ventilation in the arena and used proper safety attire when working in the arena . With the additional practice in the testing arena and innovative robot design, Team LunaCY expects to make a strong appearance at the 2012 NASA Lunabotic Mining Competition.

    Integrating Signals from the T-Cell Receptor and the Interleukin-2 Receptor

    Get PDF
    T cells orchestrate the adaptive immune response, making them targets for immunotherapy. Although immunosuppressive therapies prevent disease progression, they also leave patients susceptible to opportunistic infections. To identify novel drug targets, we established a logical model describing T-cell receptor (TCR) signaling. However, to have a model that is able to predict new therapeutic approaches, the current drug targets must be included. Therefore, as a next step we generated the interleukin-2 receptor (IL-2R) signaling network and developed a tool to merge logical models. For IL-2R signaling, we show that STAT activation is independent of both Src- and PI3-kinases, while ERK activation depends upon both kinases and additionally requires novel PKCs. In addition, our merged model correctly predicted TCR-induced STAT activation. The combined network also allows information transfer from one receptor to add detail to another, thereby predicting that LAT mediates JNK activation in IL-2R signaling. In summary, the merged model not only enables us to unravel potential cross-talk, but it also suggests new experimental designs and provides a critical step towards designing strategies to reprogram T cells
    • …
    corecore