14 research outputs found

    Helicase Loading at Chromosomal Origins of Replication

    Get PDF
    Loading of the replicative DNA helicase at origins of replication is of central importance in DNA replication. As the first of the replication fork proteins assemble at chromosomal origins of replication, the loaded helicase is required for the recruitment of the rest of the replication machinery. In this work, we review the current knowledge of helicase loading at Escherichia coli and eukaryotic origins of replication. In each case, this process requires both an origin recognition protein as well as one or more additional proteins. Comparison of these events shows intriguing similarities that suggest a similar underlying mechanism, as well as critical differences that likely reflect the distinct processes that regulate helicase loading in bacterial and eukaryotic cells.Howard Hughes Medical InstituteNational Institutes of Health (U.S.) (Grant RO1 GM052339

    Two forms of ribosomal protein L2 of Escherichia coli that inhibit DnaA in DNA replication

    Get PDF
    We purified an inhibitor of oriC plasmid replication and determined that it is a truncated form of ribosomal protein L2 evidently lacking 59 amino acid residues from the C-terminal region encoded by rplB. We show that this truncated form of L2 or mature L2 physically interacts with the N-terminal region of DnaA to inhibit initiation from oriC by apparently interfering with DnaA oligomer formation, and the subsequent assembly of the prepriming complex on an oriC plasmid. Both forms of L2 also inhibit the unwinding of oriC by DnaA. These in vitro results raise the possibility that one or both forms of L2 modulate DnaA function in vivo to regulate the frequency of initiation

    The Macromolecular Machines that Duplicate the Escherichia coli Chromosome as Targets for Drug Discovery

    No full text
    DNA replication is an essential process. Although the fundamental strategies to duplicate chromosomes are similar in all free-living organisms, the enzymes of the three domains of life that perform similar functions in DNA replication differ in amino acid sequence and their three-dimensional structures. Moreover, the respective proteins generally utilize different enzymatic mechanisms. Hence, the replication proteins that are highly conserved among bacterial species are attractive targets to develop novel antibiotics as the compounds are unlikely to demonstrate off-target effects. For those proteins that differ among bacteria, compounds that are species-specific may be found. Escherichia coli has been developed as a model system to study DNA replication, serving as a benchmark for comparison. This review summarizes the functions of individual E. coli proteins, and the compounds that inhibit them

    Genetic Method To Analyze Essential Genes of Escherichia coliā–æ

    No full text
    The genetic analysis of essential genes has been generally restricted to the use of conditional mutations, or inactivating chromosomal mutations, which require a complementing plasmid that must either be counterselected or lost to measure a phenotype. These approaches are limited because they do not permit the analysis of mutations suspected to affect a specific function of a protein, nor do they take advantage of the increasing abundance of structural and bioinformatics data for proteins. Using the dnaC gene as an example, we developed a genetic method that should permit the mutational analysis of other essential genes of Escherichia coli and related enterobacteria. The method consists of using a strain carrying a large deletion of the dnaC gene, which is complemented by a wild-type copy expressed from a plasmid that requires isopropyl-Ī²-d-thiogalactopyranoside for maintenance. Under conditions in which this resident plasmid is lost, the method measures the function of a dnaC mutation encoded by a second plasmid. This methodology should be widely applicable to the genetic analysis of other essential genes
    corecore