140 research outputs found

    Fixing DNA breaks during class switch recombination

    Get PDF
    Immunoglobulin (Ig) class switch recombination (CSR) involves the breakage and subsequent repair of two DNA sequences, known as switch (S) regions, which flank IgH constant region exons. The resolution of CSR-associated breaks is thought to require the nonhomologous end-joining (NHEJ) DNA repair pathway, but the role of the NHEJ factor DNA-dependent protein kinase catalytic subunit (DNA-PKcs) in this process has been unclear. A new study, in which broken IgH-containing chromosomes in switching B cells were visualized directly, clearly demonstrated that DNA-PKcs and, unexpectedly, the nuclease Artemis are involved in the resolution of switch breaks

    On Love-type waves in a finitely deformed magnetoelastic layered half-space

    Get PDF
    In this paper, the propagation of Love-type waves in a homogeneously and finitely deformed layered half-space of an incompressible non-conducting magnetoelastic material in the presence of an initial uniform magnetic field is analyzed. The equations and boundary conditions governing linearized incremental motions superimposed on an underlying deformation and magnetic field for a magnetoelastic material are summarized and then specialized to a form appropriate for the study of Love-type waves in a layered half-space. The wave propagation problem is then analyzed for different directions of the initial magnetic field for two different magnetoelastic energy functions, which are generalizations of the standard neo-Hookean and Mooney–Rivlin elasticity models. The resulting wave speed characteristics in general depend significantly on the initial magnetic field as well as on the initial finite deformation, and the results are illustrated graphically for different combinations of these parameters. In the absence of a layer, shear horizontal surface waves do not exist in a purely elastic material, but the presence of a magnetic field normal to the sagittal plane makes such waves possible, these being analogous to Bleustein–Gulyaev waves in piezoelectric materials. Such waves are discussed briefly at the end of the paper

    Checkpoint inhibition reduces the threshold for Drug-Specific T-Cell priming and increases the incidence of sulfasalazine hypersensitivity

    Get PDF
    An emerging clinical issue associated with immune-oncology agents is the collateral effects on the tolerability of concomitant medications. One report of this phenomenon was the increased incidence of hypersensitivity reactions observed in patients receiving concurrent immune checkpoint inhibitors (ICIs) and sulfasalazine (SLZ). Thus, the aim of this study was to characterize the T cells involved in the pathogenesis of such reactions, and recapitulate the effects of inhibitory checkpoint blockade on de-novo priming responses to compounds within in vitro platforms. A regulatory competent human dendritic cell/T-cell coculture assay was used to model the effects of ICIs on de novo nitroso sulfamethoxazole- and sulfapyridine (SP) (the sulfonamide component of SLZ) hydroxylamine-specific priming responses. The role of T cells in the pathogenesis of the observed reactions was explored in 3 patients through phenotypic characterization of SP/sulfapyridine hydroxylamine (SPHA)-responsive T-cell clones (TCC), and assessment of cross-reactivity and pathways of T-cell activation. Augmentation of the frequency of responding drug-specific T cells and intensity of the T-cell response was observed with PD-1/PD-L1 blockade. Monoclonal populations of SP- and SPHA-responsive T cells were isolated from all 3 patients. A core secretory effector molecule profile (IFN-γ, IL-13, granzyme B, and perforin) was identified for SP and SPHA-responsive TCC, which proceeded through Pi and hapten mechanisms, respectively. Data presented herein provides evidence that drug-responsive T cells are effectors of hypersensitivity reactions observed in oncology patients administered ICIs and SLZ. Perturbation of drug-specific T-cell priming is a plausible explanation for clinical observations of how an increased incidence of these adverse events is occurring

    Measurement of the CP-Violating Asymmetry Amplitude sin2β\beta

    Get PDF
    We present results on time-dependent CP-violating asymmetries in neutral B decays to several CP eigenstates. The measurements use a data sample of about 88 million Y(4S) --> B Bbar decays collected between 1999 and 2002 with the BABAR detector at the PEP-II asymmetric-energy B Factory at SLAC. We study events in which one neutral B meson is fully reconstructed in a final state containing a charmonium meson and the other B meson is determined to be either a B0 or B0bar from its decay products. The amplitude of the CP-violating asymmetry, which in the Standard Model is proportional to sin2beta, is derived from the decay-time distributions in such events. We measure sin2beta = 0.741 +/- 0.067 (stat) +/- 0.033 (syst) and |lambda| = 0.948 +/- 0.051 (stat) +/- 0.017 (syst). The magnitude of lambda is consistent with unity, in agreement with the Standard Model expectation of no direct CP violation in these modes

    The Athena X-ray Integral Field Unit: a consolidated design for the system requirement review of the preliminary definition phase

    Get PDF
    Instrumentatio

    Search for dark mesons decaying to top and bottom quarks in proton-proton collisions at √s = 13 TeV with the ATLAS detector

    Get PDF
    A search for dark mesons originating from strongly-coupled, SU(2) dark favor symmetry conserving models and decaying gaugephobically to pure Standard Model final states containing top and bottom quarks is presented. The search targets fully hadronic final states and final states with exactly one electron or muon and multiple jets. The analyzed data sample corresponds to an integrated luminosity of 140 fb−1 of proton-proton collisions collected at √s = 13 TeV with the ATLAS detector at the Large Hadron Collider. No significant excess over the Standard Model background expectation is observed and the results are used to set the first direct constraints on this type of model. The two-dimensional signal space of dark pion masses mπD and dark rho-meson masses mρD is scanned. For mπD /mρD = 0.45, dark pions with masses mπD < 940 GeV are excluded at the 95% CL, while for mπD /mρD = 0.25 masses mπD < 740 GeV are excluded
    corecore