72 research outputs found

    Estimation Procedures and TFP Analysis of the JIP Database 2006 Provisional Version

    Get PDF
    (Introduction) The purpose of this paper is to explain the preliminary version of the newly compiled Japan Industrial Productivity Database (JIP 2006) and report some results of our growth accounting analysis based on this database. The JIP 2006 contains information on 108 sectors from 1970 to 2002 that can be used for total factor productivity analyses. These sectors cover the whole Japanese economy. The JIP Database was compiled as part of the RIETI (Research Institute of Economy, Trade and Industry) research project "Study on Industry-Level and Firm-Level Productivity in Japan." The original version of the JIP Database (ESRI/Hi-Stat JIP Database 2003) was compiled in a collaboration between ESRI (Economic and Social Research Institute, Cabinet Office, Government of Japan) as part of its research project on "Japan's Potential Growth" and Hitotsubashi University as part of its Hi-Stat project (A 21st-Century COE Program, Research Unit for Statistical Analysis in the Social Sciences). The authors are grateful to ESRI and members of the Hi-Stat team for the support and cooperation provided for our present RIETI project. At this moment, the major data available are sectoral capital service input indices and labor service input indices, including information on real capital stocks and the nominal cost of capital by type of capital and by industry, the nominal and real values of sectoral gross output and intermediate input, as well as some supplementary tables, such as statistics on trade, inward and outward FDI, and Japan's industrial structure. All real values are based on 1995 prices. For growth accounting, nominal labor costs and nominal capital services for 108 industries are also estimated. The sum of these two values for each industry is not adjusted to be equal to the value added of that industry at factor cost base. The final version of the JIP 2006 is scheduled to be released by November, 2006. The final version will include nominal and real annual input-output tables, detailed information on ICT capital services and some additional statistics, such as R&D stocks and capacity utilization rates at the detailed sectoral level. For scholars familiar with the JIP 2003, we here briefly summarize the main differences between and the main similarities of the 2006 and 2003 versions of the JIP. 1. The JIP 2003 is based on the 1968 SNA, while the JIP 2006 is based on the 1993 SNA. The capital stock of the JIP 2006 includes order-made software, plant engineering, and assets accumulated by the search for minerals. The JIP 2003 uses SNA statistics as control totals. Following Japan's present SNA statistics, capital stock in the preliminary version of the JIP 2006 does not include prepackaged and in-house software. However, the final version of the JIP 2006 will include two sets of statistics, one in which capital stock does not include prepackaged and in-house software and one in which it does. 2. In the case of the JIP 2006, labor input data include detailed information on labor input cross-classified by categories of labor. The paper is organized as follows: In the next section, we report the estimation procedures of our annual input-output tables. In Sections 2 and 3, we explain the capital service input data and the labor input data of the JIP 2006, respectively. Finally, in Section 4, we analyze Japan's sectoral and macro TFP growth.

    Japanese subpopulation analysis of MONARCH 2: phase 3 study of abemaciclib plus fulvestrant for treatment of hormone receptor-positive, human epidermal growth factor receptor 2-negative breast cancer that progressed on endocrine therapy

    Get PDF
    BACKGROUND: This was a Japanese subpopulation analysis of MONARCH 2, a double-blind, randomized, placebo-controlled, phase 3 study of abemaciclib plus fulvestrant in patients with hormone receptor-positive, human epidermal growth factor receptor 2-negative advanced breast cancer (ABC). METHODS: Eligible women had progressed on (neo)adjuvant endocrine therapy (ET),  ≤ 12 months from end of adjuvant ET, or on first-line ET for ABC, and had not received chemotherapy for ABC. Patients were randomized 2:1 to receive abemaciclib or placebo plus fulvestrant. The primary endpoint was progression-free survival (PFS). Secondary endpoints included overall survival (OS), pharmacokinetics (PK), health-related quality of life (HRQoL), and safety. RESULTS: In Japan, 95 patients were randomized (abemaciclib, n = 64; placebo, n = 31). At final PFS analysis (February 14, 2017), median PFS was 21.2 and 14.3 months, respectively, in the abemaciclib and placebo groups (hazard ratio: 0.672; 95% confidence interval: 0.380-1.189). Abemaciclib had a higher objective response rate (37.5%) than placebo (12.9%). PK and safety profiles for Japanese patients were consistent with those of the overall population, without clinically meaningful differences across most HRQoL dimensions evaluated. The most frequent adverse events in the abemaciclib versus placebo groups were diarrhea (95.2 versus 25.8%), neutropenia (79.4 versus 0%), and leukopenia (66.7 versus 0%). At a second data cutoff (June 20, 2019), median OS was not reached with abemaciclib and 47.3 months with placebo (hazard ratio: 0.755; 95% confidence interval: 0.390-1.463). CONCLUSIONS: Results of the Japanese subpopulation were consistent with the improved clinical outcomes and manageable safety profile observed in the overall population. CLINICAL TRIAL REGISTRATION: NCT02107703; U.S. National Library of Medicine: https://clinicaltrials.gov/ct2/show/NCT02107703

    Indirubin, a Constituent of the Chinese Herbal Medicine Qing-Dai, Attenuates Dextran Sulfate Sodium-induced Murine Colitis

    Get PDF
    【Background】Indirubin, a constituent of the Chinese herbal medicine “Qing-Dai,” has anti-cancer and anti-inflammatory activities. We aimed to evaluate the efficacy of indirubin for ameliorating colonic inflammation in a mouse model of inflammatory bowel disease. 【Methods】Mice with dextran sulfate sodium (DSS)induced acute and chronic colitis were treated with indirubin in their diet. Clinical and histologic changes were evaluated. In addition, colon levels of interleukin-6, a critical pro-inflammatory mediator, was detected by enzyme-linked immunosorbent assay. 【Results】In the model of acute colitis, indirubin treatment improved the loss of body weight. Histology of colonic tissue revealed that indirubin treatment improved the histology grading of colitis (P = 0.02), the extent of submucosal fibrosis (P = 0.018), the number of mucosal toluidine blue-positive cells (P = 0.004) and colon length (P = 0.01). In the model of chronic colitis, indirubin treatment had no significant effect on pathologic findings except for colon length (P = 0.003). However, indirubin administration significantly reduced colon levels of interleukin-6 in the chronic-colitis model (P = 0.001). 【Conclusion】Our study clearly showed that oral intake of indirubin can improve murine DSS-induced colitis (which mimics human inflammatory bowel disease)

    Get PDF

    Prognostic model to predict postoperative acute kidney injury in patients undergoing major gastrointestinal surgery based on a national prospective observational cohort study.

    Get PDF
    Background: Acute illness, existing co-morbidities and surgical stress response can all contribute to postoperative acute kidney injury (AKI) in patients undergoing major gastrointestinal surgery. The aim of this study was prospectively to develop a pragmatic prognostic model to stratify patients according to risk of developing AKI after major gastrointestinal surgery. Methods: This prospective multicentre cohort study included consecutive adults undergoing elective or emergency gastrointestinal resection, liver resection or stoma reversal in 2-week blocks over a continuous 3-month period. The primary outcome was the rate of AKI within 7 days of surgery. Bootstrap stability was used to select clinically plausible risk factors into the model. Internal model validation was carried out by bootstrap validation. Results: A total of 4544 patients were included across 173 centres in the UK and Ireland. The overall rate of AKI was 14·2 per cent (646 of 4544) and the 30-day mortality rate was 1·8 per cent (84 of 4544). Stage 1 AKI was significantly associated with 30-day mortality (unadjusted odds ratio 7·61, 95 per cent c.i. 4·49 to 12·90; P < 0·001), with increasing odds of death with each AKI stage. Six variables were selected for inclusion in the prognostic model: age, sex, ASA grade, preoperative estimated glomerular filtration rate, planned open surgery and preoperative use of either an angiotensin-converting enzyme inhibitor or an angiotensin receptor blocker. Internal validation demonstrated good model discrimination (c-statistic 0·65). Discussion: Following major gastrointestinal surgery, AKI occurred in one in seven patients. This preoperative prognostic model identified patients at high risk of postoperative AKI. Validation in an independent data set is required to ensure generalizability

    The Japanese Clinical Practice Guidelines for Management of Sepsis and Septic Shock 2020 (J-SSCG 2020)

    Get PDF
    The Japanese Clinical Practice Guidelines for Management of Sepsis and Septic Shock 2020 (J-SSCG 2020), a Japanese-specific set of clinical practice guidelines for sepsis and septic shock created as revised from J-SSCG 2016 jointly by the Japanese Society of Intensive Care Medicine and the Japanese Association for Acute Medicine, was first released in September 2020 and published in February 2021. An English-language version of these guidelines was created based on the contents of the original Japanese-language version. The purpose of this guideline is to assist medical staff in making appropriate decisions to improve the prognosis of patients undergoing treatment for sepsis and septic shock. We aimed to provide high-quality guidelines that are easy to use and understand for specialists, general clinicians, and multidisciplinary medical professionals. J-SSCG 2016 took up new subjects that were not present in SSCG 2016 (e.g., ICU-acquired weakness [ICU-AW], post-intensive care syndrome [PICS], and body temperature management). The J-SSCG 2020 covered a total of 22 areas with four additional new areas (patient- and family-centered care, sepsis treatment system, neuro-intensive treatment, and stress ulcers). A total of 118 important clinical issues (clinical questions, CQs) were extracted regardless of the presence or absence of evidence. These CQs also include those that have been given particular focus within Japan. This is a large-scale guideline covering multiple fields; thus, in addition to the 25 committee members, we had the participation and support of a total of 226 members who are professionals (physicians, nurses, physiotherapists, clinical engineers, and pharmacists) and medical workers with a history of sepsis or critical illness. The GRADE method was adopted for making recommendations, and the modified Delphi method was used to determine recommendations by voting from all committee members.As a result, 79 GRADE-based recommendations, 5 Good Practice Statements (GPS), 18 expert consensuses, 27 answers to background questions (BQs), and summaries of definitions and diagnosis of sepsis were created as responses to 118 CQs. We also incorporated visual information for each CQ according to the time course of treatment, and we will also distribute this as an app. The J-SSCG 2020 is expected to be widely used as a useful bedside guideline in the field of sepsis treatment both in Japan and overseas involving multiple disciplines.other authors: Satoru Hashimoto,Daisuke Hasegawa,Junji Hatakeyama,Naoki Hara,Naoki Higashibeppu,Nana Furushima,Hirotaka Furusono,Yujiro Matsuishi,Tasuku Matsuyama,Yusuke Minematsu,Ryoichi Miyashita,Yuji Miyatake,Megumi Moriyasu,Toru Yamada,Hiroyuki Yamada,Ryo Yamamoto,Takeshi Yoshida,Yuhei Yoshida,Jumpei Yoshimura,Ryuichi Yotsumoto,Hiroshi Yonekura,Takeshi Wada,Eizo Watanabe,Makoto Aoki,Hideki Asai,Takakuni Abe,Yutaka Igarashi,Naoya Iguchi,Masami Ishikawa,Go Ishimaru,Shutaro Isokawa,Ryuta Itakura,Hisashi Imahase,Haruki Imura,Takashi Irinoda,Kenji Uehara,Noritaka Ushio,Takeshi Umegaki,Yuko Egawa,Yuki Enomoto,Kohei Ota,Yoshifumi Ohchi,Takanori Ohno,Hiroyuki Ohbe,Kazuyuki Oka,Nobunaga Okada,Yohei Okada,Hiromu Okano,Jun Okamoto,Hiroshi Okuda,Takayuki Ogura,Yu Onodera,Yuhta Oyama,Motoshi Kainuma,Eisuke Kako,Masahiro Kashiura,Hiromi Kato,Akihiro Kanaya,Tadashi Kaneko,Keita Kanehata,Ken-ichi Kano,Hiroyuki Kawano,Kazuya Kikutani,Hitoshi Kikuchi,Takahiro Kido,Sho Kimura,Hiroyuki Koami,Daisuke Kobashi,Iwao Saiki,Masahito Sakai,Ayaka Sakamoto,Tetsuya Sato,Yasuhiro Shiga,Manabu Shimoto,Shinya Shimoyama,Tomohisa Shoko,Yoh Sugawara,Atsunori Sugita,Satoshi Suzuki,Yuji Suzuki,Tomohiro Suhara,Kenji Sonota,Shuhei Takauji,Kohei Takashima,Sho Takahashi,Yoko Takahashi,Jun Takeshita,Yuuki Tanaka,Akihito Tampo,Taichiro Tsunoyama,Kenichi Tetsuhara,Kentaro Tokunaga,Yoshihiro Tomioka,Kentaro Tomita,Naoki Tominaga,Mitsunobu Toyosaki,Yukitoshi Toyoda,Hiromichi Naito,Isao Nagata,Tadashi Nagato,Yoshimi Nakamura,Yuki Nakamori,Isao Nahara,Hiromu Naraba,Chihiro Narita,Norihiro Nishioka,Tomoya Nishimura,Kei Nishiyama,Tomohisa Nomura,Taiki Haga,Yoshihiro Hagiwara,Katsuhiko Hashimoto,Takeshi Hatachi,Toshiaki Hamasaki,Takuya Hayashi,Minoru Hayashi,Atsuki Hayamizu,Go Haraguchi,Yohei Hirano,Ryo Fujii,Motoki Fujita,Naoyuki Fujimura,Hiraku Funakoshi,Masahito Horiguchi,Jun Maki,Naohisa Masunaga,Yosuke Matsumura,Takuya Mayumi,Keisuke Minami,Yuya Miyazaki,Kazuyuki Miyamoto,Teppei Murata,Machi Yanai,Takao Yano,Kohei Yamada,Naoki Yamada,Tomonori Yamamoto,Shodai Yoshihiro,Hiroshi Tanaka,Osamu NishidaGuideline

    The Japanese Clinical Practice Guidelines for Management of Sepsis and Septic Shock 2020 (J-SSCG 2020)

    Get PDF
    The Japanese Clinical Practice Guidelines for Management of Sepsis and Septic Shock 2020 (J-SSCG 2020), a Japanese-specific set of clinical practice guidelines for sepsis and septic shock created as revised from J-SSCG 2016 jointly by the Japanese Society of Intensive Care Medicine and the Japanese Association for Acute Medicine, was first released in September 2020 and published in February 2021. An English-language version of these guidelines was created based on the contents of the original Japanese-language version. The purpose of this guideline is to assist medical staff in making appropriate decisions to improve the prognosis of patients undergoing treatment for sepsis and septic shock. We aimed to provide high-quality guidelines that are easy to use and understand for specialists, general clinicians, and multidisciplinary medical professionals. J-SSCG 2016 took up new subjects that were not present in SSCG 2016 (e.g., ICU-acquired weakness [ICU-AW], post-intensive care syndrome [PICS], and body temperature management). The J-SSCG 2020 covered a total of 22 areas with four additional new areas (patient- and family-centered care, sepsis treatment system, neuro-intensive treatment, and stress ulcers). A total of 118 important clinical issues (clinical questions, CQs) were extracted regardless of the presence or absence of evidence. These CQs also include those that have been given particular focus within Japan. This is a large-scale guideline covering multiple fields; thus, in addition to the 25 committee members, we had the participation and support of a total of 226 members who are professionals (physicians, nurses, physiotherapists, clinical engineers, and pharmacists) and medical workers with a history of sepsis or critical illness. The GRADE method was adopted for making recommendations, and the modified Delphi method was used to determine recommendations by voting from all committee members.other authors: Yasuhiro Norisue, Satoru Hashimoto, Daisuke Hasegawa, Junji Hatakeyama, Naoki Hara, Naoki Higashibeppu, Nana Furushima, Hirotaka Furusono, Yujiro Matsuishi, Tasuku Matsuyama, Yusuke Minematsu, Ryoichi Miyashita, Yuji Miyatake, Megumi Moriyasu, Toru Yamada, Hiroyuki Yamada, Ryo Yamamoto, Takeshi Yoshida, Yuhei Yoshida, Jumpei Yoshimura, Ryuichi Yotsumoto, Hiroshi Yonekura, Takeshi Wada, Eizo Watanabe, Makoto Aoki, Hideki Asai, Takakuni Abe, Yutaka Igarashi, Naoya Iguchi, Masami Ishikawa, Go Ishimaru, Shutaro Isokawa, Ryuta Itakura, Hisashi Imahase, Haruki Imura, Takashi Irinoda, Kenji Uehara, Noritaka Ushio, Takeshi Umegaki, Yuko Egawa, Yuki Enomoto, Kohei Ota, Yoshifumi Ohchi, Takanori Ohno, Hiroyuki Ohbe, Kazuyuki Oka, Nobunaga Okada, Yohei Okada, Hiromu Okano, Jun Okamoto, Hiroshi Okuda, Takayuki Ogura, Yu Onodera, Yuhta Oyama, Motoshi Kainuma, Eisuke Kako, Masahiro Kashiura, Hiromi Kato, Akihiro Kanaya, Tadashi Kaneko, Keita Kanehata, Ken-ichi Kano, Hiroyuki Kawano, Kazuya Kikutani, Hitoshi Kikuchi, Takahiro Kido, Sho Kimura, Hiroyuki Koami, Daisuke Kobashi, Iwao Saiki, Masahito Sakai, Ayaka Sakamoto, Tetsuya Sato, Yasuhiro Shiga, Manabu Shimoto, Shinya Shimoyama, Tomohisa Shoko, Yoh Sugawara, Atsunori Sugita, Satoshi Suzuki, Yuji Suzuki, Tomohiro Suhara, Kenji Sonota, Shuhei Takauji, Kohei Takashima, Sho Takahashi, Yoko Takahashi, Jun Takeshita, Yuuki Tanaka, Akihito Tampo, Taichiro Tsunoyama, Kenichi Tetsuhara, Kentaro Tokunaga, Yoshihiro Tomioka, Kentaro Tomita, Naoki Tominaga, Mitsunobu Toyosaki, Yukitoshi Toyoda, Hiromichi Naito, Isao Nagata, Tadashi Nagato, Yoshimi Nakamura, Yuki Nakamori, Isao Nahara, Hiromu Naraba, Chihiro Narita, Norihiro Nishioka, Tomoya Nishimura, Kei Nishiyama, Tomohisa Nomura, Taiki Haga, Yoshihiro Hagiwara, Katsuhiko Hashimoto, Takeshi Hatachi, Toshiaki Hamasaki, Takuya Hayashi, Minoru Hayashi, Atsuki Hayamizu, Go Haraguchi, Yohei Hirano, Ryo Fujii, Motoki Fujita, Naoyuki Fujimura, Hiraku Funakoshi, Masahito Horiguchi, Jun Maki, Naohisa Masunaga, Yosuke Matsumura, Takuya Mayumi, Keisuke Minami, Yuya Miyazaki, Kazuyuki Miyamoto, Teppei Murata, Machi Yanai, Takao Yano, Kohei Yamada, Naoki Yamada, Tomonori Yamamoto, Shodai Yoshihiro, Hiroshi Tanaka & Osamu Nishid

    Spinal Surgery Rehabilitation

    No full text
    corecore