6 research outputs found

    Mid-infrared size survey of Young Stellar Objects: Description of Keck segment-tilting experiment and basic results

    Full text link
    The mid-infrared properties of pre-planetary disks are sensitive to the temperature and flaring profiles of disks for the regions where planet formation is expected to occur. In order to constrain theories of planet formation, we have carried out a mid-infrared (wavelength 10.7 microns) size survey of young stellar objects using the segmented Keck telescope in a novel configuration. We introduced a customized pattern of tilts to individual mirror segments to allow efficient sparse-aperture interferometry, allowing full aperture synthesis imaging with higher calibration precision than traditional imaging. In contrast to previous surveys on smaller telescopes and with poorer calibration precision, we find most objects in our sample are partially resolved. Here we present the main observational results of our survey of 5 embedded massive protostars, 25 Herbig Ae/Be stars, 3 T Tauri stars, 1 FU Ori system, and 5 emission-line objects of uncertain classification. The observed mid-infrared sizes do not obey the size-luminosity relation found at near-infrared wavelengths and a companion paper will provide further modelling analysis of this sample. In addition, we report imaging results for a few of the most resolved objects, including complex emission around embedded massive protostars, the photoevaporating circumbinary disk around MWC 361A, and the subarcsecond binaries T Tau, FU Ori and MWC 1080.Comment: Accepted by Astrophysical Journal. 38 pages. 9 figure

    An Extragalactic 12CO J=3-2 survey with the Heinrich-Hertz-Telescope

    Full text link
    We present results of a ^{12}CO J = 3-2 survey of 125 nearby galaxies obtained with the 10-m Heinrich-Hertz-Telescope, with the aim to characterize the properties of warm and dense molecular gas in a large variety of environments. With an angular resolution of 22'', ^{12}CO 3-2 emission was detected in 114 targets. Based on 61 galaxies observed with equal beam sizes the ^{12}CO 3-2/1-0 integrated line intensity ratio R_{31} is found to vary from 0.2 to 1.9, with an average value of 0.81. No correlations are found for R_{31} to Hubble type and far infrared luminosity. Possible indications for a correlation with inclination angle and the 60mum/100mum color temperature of the dust are not significant. Higher R_{31} ratios than in ``normal'' galaxies, hinting at enhanced molecular excitation, may be found in galaxies hosting active galactic nuclei. Even higher average values are determined for galaxies with bars or starbursts, the latter being identified by the ratio of infrared luminosity versus isophotal area, log[(L_{FIR}/L_{SUN})/(D_{25}/kpc)^2)] > 7.25. (U)LIRGs are found to have the highest averaged R_{31} value. This may be a consequence of particularly vigorous star formation activity, triggered by galaxy interaction and merger events. The nuclear CO luminosities are slightly sublinearly correlated with the global FIR luminosity in both the ^{12}CO J = 3-2 and the 1-0 lines. The slope of the log-log plots rises with compactness of the respective galaxy subsample, indicating a higher average density and a larger fraction of thermalized gas in distant luminous galaxies. While linear or sublinear correlations for the ^{12}CO J = 3-2 line can be explained, if the bulk of the observed J = 3-2 emission originates from molecular gas with densities below the critical one, the case of the ^{12}CO J = 1-0 line with its small critical density remains a puzzle.Comment: 26 pages, 9 figures, 4 tables, Accepted for publication in The Astrophysical Journal (Part 1

    Infrared two-colour diagrams for AGB stars using AKARI, MSX, IRAS and NIR data

    Full text link
    Using a revised version of the catalog of AGB stars by Suh & Kwon (2009), we present various infrared two-colour diagrams (2CDs) for 3003 O-rich, 1168 C-rich, 362 S-type and 35 silicate carbon stars in our Galaxy. For each object in the new catalog, we cross-identify the AKARI, MSX and 2MASS counterparts by finding the nearest one from the position information in the IRAS PSC. For the large sample of AGB stars, we present infrared two-colour diagrams using IRAS (PSC), AKARI (PSC and BSC), MSX (PSC) and near infrared (K and L bands; including 2MASS data at KS band) data for different classes of AGB stars based on the chemistry of the dust shell and/or the central star. The infrared 2CDs of AGB stars can provide useful information about the structure and evolution of the dust envelopes as well as the central stars. On the 2CDs, we plot tracks of the theoretical radiative transfer model results with increasing dust shell optical depths. Comparing the observations with the theoretical models on the new 2CDs, we find that the basic model tracks roughly coincide with the densely populated observed points. Generally, we can explain the observations of O-rich and C-rich AGB stars on the various 2CDs with the theoretical models using dust opacity functions of amorphous silicate, amorphous carbon, SiC and corundum. For O-rich AGB stars, we find that the models using corundum as well as silicate can improve the fit with the observations
    corecore