571 research outputs found

    Functional magnetic resonance imaging (fMRI) changes and saliva production associated with acupuncture at LI-2 acupuncture point: a randomized controlled study

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Clinical studies suggest that acupuncture can stimulate saliva production and reduce xerostomia (dry mouth). We were interested in exploring the neuronal substrates involved in such responses.</p> <p>Methods</p> <p>In a randomized, sham acupuncture controlled, subject blinded trial, twenty healthy volunteers received true and sham acupuncture in random order. Cortical regions that were activated or deactivated during the interventions were evaluated by functional magnetic resonance imaging (fMRI). Saliva production was also measured.</p> <p>Results</p> <p>Unilateral manual acupuncture stimulation at LI-2, a point commonly used in clinical practice to treat xerostomia, was associated with bilateral activation of the insula and adjacent operculum. Sham acupuncture at an adjacent site induced neither activation nor deactivation. True acupuncture induced more saliva production than sham acupuncture.</p> <p>Conclusion</p> <p>Acupuncture at LI-2 was associated with neuronal activations absent during sham acupuncture stimulation. Neuroimaging signal changes appear correlated to saliva production.</p

    Interpersonal and affective dimensions of psychopathic traits in adolescents : development and validation of a self-report instrument

    Get PDF
    We report the development and psychometric evaluations of a self-report instrument designed to screen for psychopathic traits among mainstream community adolescents. Tests of item functioning were initially conducted with 26 adolescents. In a second study the new instrument was administered to 150 high school adolescents, 73 of who had school records of suspension for antisocial behavior. Exploratory factor analysis yielded a 4-factor structure (Impulsivity α = .73, Self-Centredness α = .70, Callous-Unemotional α = .69, and Manipulativeness α = .83). In a third study involving 328 high school adolescents, 130 with records of suspension for antisocial behaviour, competing measurement models were evaluated using confirmatory factor analysis. The superiority of a first-order model represented by four correlated factors that was invariant across gender and age was confirmed. The findings provide researchers and clinicians with a psychometrically strong, self-report instrument and a greater understanding of psychopathic traits in mainstream adolescents

    Inflammatory response in mixed viral-bacterial community-acquired pneumonia

    Get PDF
    BACKGROUND: The role of mixed pneumonia (virus + bacteria) in community-acquired pneumonia (CAP) has been described in recent years. However, it is not known whether the systemic inflammatory profile is different compared to monomicrobial CAP. We wanted to investigate this profile of mixed viral-bacterial infection and to compare it to monomicrobial bacterial or viral CAP. METHODS: We measured baseline serum procalcitonin (PCT), C reactive protein (CRP), and white blood cell (WBC) count in 171 patients with CAP with definite etiology admitted to a tertiary hospital: 59 (34.5%) bacterial, 66 (39.%) viral and 46 (27%) mixed (viral-bacterial). RESULTS: Serum PCT levels were higher in mixed and bacterial CAP compared to viral CAP. CRP levels were higher in mixed CAP compared to the other groups. CRP was independently associated with mixed CAP. CRP levels below 26 mg/dL were indicative of an etiology other than mixed in 83% of cases, but the positive predictive value was 45%. PCT levels over 2.10 ng/mL had a positive predictive value for bacterial-involved CAP versus viral CAP of 78%, but the negative predictive value was 48%. CONCLUSIONS: Mixed CAP has a different inflammatory pattern compared to bacterial or viral CAP. High CRP levels may be useful for clinicians to suspect mixed CAP

    π+\pi^+ photoproduction on the proton for photon energies from 0.725 to 2.875 GeV

    Full text link
    Differential cross sections for the reaction γpnπ+\gamma p \to n \pi^+ have been measured with the CEBAF Large Acceptance Spectrometer (CLAS) and a tagged photon beam with energies from 0.725 to 2.875 GeV. Where available, the results obtained here compare well with previously published results for the reaction. Agreement with the SAID and MAID analyses is found below 1 GeV. The present set of cross sections has been incorporated into the SAID database, and exploratory fits have been made up to 2.7 GeV. Resonance couplings have been extracted and compared to previous determinations. With the addition of these cross sections to the world data set, significant changes have occurred in the high-energy behavior of the SAID cross-section predictions and amplitudes.Comment: 18 pages, 10 figure

    Wavelet Cycle Spinning Denoising of NDE Ultrasonic Signals Using a Random Selection of Shifts

    Full text link
    Wavelets are a powerful tool for signal and image denoising. Most of the denoising applications in different fields were based on the thresholding of the discrete wavelet transform (DWT) coefficients. Nevertheless, DWT transform is not a time or shift invariant transform and results depend on the selected shift. Improvements on the denoising performance can be obtained using the stationary wavelet transform (SWT) (also called shift-invariant or undecimated wavelet transform). Denoising using SWT has previously shown a robust and usually better performance than denoising using DWT but with a higher computational cost. In this paper, wavelet shrinkage schemes are applied for reducing noise in synthetic and experimental non-destructive evaluation ultrasonic A-scans, using DWT and a cycle-spinning implementation of SWT. A new denoising procedure, which we call random partial cycle spinning (RPCS), is presented. It is based on a cycle-spinning over a limited number of shifts that are selected in a random way. Wavelet denoising based on DWT, SWT and RPCS have been applied to the same sets of ultrasonic A-scans and their performances in terms of SNR are compared. In all cases three well known threshold selection rules (Universal, Minimax and Sure), with decomposition level dependent selection, have been used. It is shown that the new procedure provides a good robust denoising performance, without the DWT fluctuating performance, and close to SWT but with a much lower computational cost.This work was partially supported by Spanish MCI Project DPI2011-22438San Emeterio Prieto, JL.; Rodríguez-Hernández, MA. (2015). Wavelet Cycle Spinning Denoising of NDE Ultrasonic Signals Using a Random Selection of Shifts. Journal of Nondestructive Evaluation. 34(1):1-8. https://doi.org/10.1007/s10921-014-0270-8S18341Galloway, R.L., McDermott, B.A., Thurstone, F.L.: A frequency diversity process for speckle reduction in real-time ultrasonic images. IEEE Trans. Ultrason. Ferroelectr. Freq. Control 35, 45–49 (1988)Newhouse, V.L., Bilgutay, N.M., Saniie, J., Furgason, E.S.: Flaw-to-grain echo enhancement by split spectrum processing. Ultrasonics 20, 59–68 (1982)Karpur, P., Canelones, O.J.: Split spectrum processing: a new filtering approach for improved signal-to-noise ratio enhancement of ultrasonic signals. Ultrasonics 30, 351–357 (1992)Donoho, D.L., Johnstone, I.M.: Ideal spatial adaptation by wavelet shrinkage. Biometrika 81, 425–455 (1994)Donoho, D.L., Johnstone, I.M., Kerkyacharian, G., Picard, D.: Wavelet shrinkage: asymptotia? J. R Stat. Soc. Ser. B 57, 301–369 (1995)Donoho, D.L., Johnstone, I.M.: Adapting to unknown smoothness via wavelet shrinkage. J. Am. Stat. Assoc. 90, 1200–1224 (1995)Johnstone, I.M., Silverman, B.W.: Wavelet threshold estimators for data with correlated noise. J. R Stat. Soc. 59, 319–351 (1997)Jansen, M.: Noise Reduction by Wavelet Thresholding. Lecture Notes in Statistics 161. Springer, New York (2001). doi: 10.1007/978-1-4613-0145-5Nason, G.P., Silverman, B.W.:The stationary wavelet transform and some statistical applications. In: Antoniadis, A., Oppenheim, G. (eds.) Wavelets and Statistics. Lecture Notes in Statistics, Vol. 103, pp 281–299. Springer, New York (1995)Lang, M., Guo, H., Odegard, J.E., Burrus, C.S.: Noise reduction using an undecimated discrete wavelet transform. IEEE Signal Proc. Lett. 3, 10–12 (1996)Coifman, R.R., Donoho, D.L.: Translation-invariant de-noising. In: Antoniadis, A., Oppenheim, G. (eds.) Wavelets and Statistics. Lecture Notes in Statistics, vol. 103, pp 125–150, Springer, New York (1995) .Abbate, A., Koay, J., Frankel, J., Schroeder, S.C., Das, P.: Signal detection and noise suppression using a wavelet transform signal processor: application to ultrasonic flaw detection. IEEE Trans. Ultrason. Ferroelectr. Freq. Control 44, 14–26 (1997)Lázaro, J.C., San Emeterio, J.L., Ramos, A., Fernandez, J.L.: Influence of thresholding procedures in ultrasonic grain noise reduction using wavelets. Ultrasonics 40, 263–267 (2002)Matz, V., Smid, R., Starman, S., Kreidl, M.: Signal-to-noise ratio enhancement based on wavelet filtering in ultrasonic testing. Ultrasonics 49, 752–759 (2009)Kubinyi, M., Kreibich, O., Neuzil, J., Smid, R.: EMAT noise suppression using information fusion in stationary wavelet packets. IEEE Trans. Ultrason. Ferroelectr. Freq. Control 58, 1027–1036 (2011)Shi, G.M., Chen, X.Y., Song, X.X., Qui, F., Ding, A.L.: Signal matching wavelet for ultrasonic flaw detection in high background noise. IEEE Trans. Ultrason. Ferroelectr. Freq. Control 58, 776–787 (2011)Song, S.P., Que, P.W.: Wavelet based noise suppression technique and its application to ultrasonic flaw detection. Ultrasonics 44, 188–193 (2006)Rodriguez, M.A., San Emeterio, J.L., Lázaro, J.C., Ramos, A.: Ultrasonic flaw detection in NDE of highly scattering materials using wavelet and Wigner-Ville transform processing. Ultrasonics 42, 847–851 (2004)Zhang, G.M., Zhang, S.Y., Wang, Y.W.: Application of adaptive time-frequency decomposition in ultrasonic NDE of highly-scattering materials. Ultrasonics 38, 961–964 (2000)Drai, R., Khelil, M., Benchaala, A.: Time frequency and wavelet transform applied to selected problems in ultrasonics NDE. NDT & E Int. 35, 567–572 (2002)Pardo, E., San Emeterio, J.L.: Noise reduction in ultrasonic NDT using undecimated wavelet transforms. Ultrasonics 44, e1063–e1067 (2006)Kechida, A., Drai, R., Guessoum, A.: Texture analysis for flaw detection in ultrasonic images. J. Nondestruct. Eval. 31, 108–116 (2012). doi: 10.1007/s10921-011-0126-4Rucka, M., Wilde, K.: Experimental study on ultrasonic monitoring of splitting failure in reinforced concrete. J. Nondestruct. Eval. 32, 372–383 (2013). doi: 10.1007/s10921-013-0191-yHosseini, S.M.H., Duczek, S., Gabbert, U.: Damage localization in plates using mode conversion characteristics of ultrasonic guided waves. J. Nondestruct. Eval. 33, 152–165 (2014). doi: 10.1007/s10921-013-0211-yMohammed, M.S., Ki-Seong, K.: Shift-invariant wavelet packet for signal de-noising in ultrasonic testing. Insight 54, 366–370 (2012)San Emeterio, J.L., Rodriguez-Hernandez, M.A.: Wavelet denoising of ultrasonic A-scans by random partial cycle spinning. In: Proceedings of the 2012 IEEE International Ultrasonics Symposium. pp 455–458.Mallat, S.G.: A theory of multiresolution signal decomposition: the wavelet representation. IEEE Trans. Pattern Anal. Mach. Intell. 11, 674–693 (1989)Shensa, M.J.: The discrete wavelet transform: wedding the à trous and Mallat algorithms. IEEE Trans. Signal Process. 40, 2464–2482 (1992). doi: 10.1109/78.157290Beylkin, G., Coifman, R., Rokhlin, V.: Fast wavelet transforms and numerical algorithms. Commun. Pure Appl. Math. 44, 141–183 (1991)Daubechies, I.: Ten Lectures on Wavelets. SIAM, Philadelphia (1992)Romijn, R.L., Thijssen, J.M., Vanbeuningen, G.W.J.: Estimation of scatterer size from backscattered ultrasound: a simulation study. IEEE Trans. Ultrason. Ferroelectr. Freq. Control 36, 593–606 (1989)Gustafsson, M.G., Stepinski, T.: Studies of split spectrum processing, optimal detection, and maximum likehood amplitude estimation using a simple clutter model. Ultrasonics 35, 31–53 (1997

    Differential cross sections and spin density matrix elements for the reaction gamma p -> p omega

    Full text link
    High-statistics differential cross sections and spin density matrix elements for the reaction gamma p -> p omega have been measured using the CLAS at Jefferson Lab for center-of-mass (CM) energies from threshold up to 2.84 GeV. Results are reported in 112 10-MeV wide CM energy bins, each subdivided into cos(theta_CM) bins of width 0.1. These are the most precise and extensive omega photoproduction measurements to date. A number of prominent structures are clearly present in the data. Many of these have not previously been observed due to limited statistics in earlier measurements

    Exclusive ρ0\rho^0 electroproduction on the proton at CLAS

    Full text link
    The epepρ0e p\to e^\prime p \rho^0 reaction has been measured, using the 5.754 GeV electron beam of Jefferson Lab and the CLAS detector. This represents the largest ever set of data for this reaction in the valence region. Integrated and differential cross sections are presented. The WW, Q2Q^2 and tt dependences of the cross section are compared to theoretical calculations based on tt-channel meson-exchange Regge theory on the one hand and on quark handbag diagrams related to Generalized Parton Distributions (GPDs) on the other hand. The Regge approach can describe at the \approx 30% level most of the features of the present data while the two GPD calculations that are presented in this article which succesfully reproduce the high energy data strongly underestimate the present data. The question is then raised whether this discrepancy originates from an incomplete or inexact way of modelling the GPDs or the associated hard scattering amplitude or whether the GPD formalism is simply inapplicable in this region due to higher-twists contributions, incalculable at present.Comment: 29 pages, 29 figure

    Application of Autologous Bone Marrow Derived Mesenchymal Stem Cells to an Ovine Model of Growth Plate Cartilage Injury

    Get PDF
    Injury to growth plate cartilage in children can lead to bone bridge formation and result in bone growth deformities, a significant clinical problem currently lacking biological treatment. Mesenchymal stem/stromal cells (MSC) offer a promising therapeutic option for regeneration of damaged cartilage, due to their self renewing and multi-lineage differentiation attributes. Although some small animal model studies highlight the therapeutic potential of MSC for growth plate repair, translational research in large animal models, which more closely resemble the human condition, are lacking. Our laboratory has recently characterised MSCs derived from ovine bone marrow, and demonstrated these cells form cartilage-like tissue when transplanted within the gelatin sponge, Gelfoam, in vivo. In the current study, autologous bone marrow MSC were seeded into Gelfoam scaffold containing TGF-β1, and transplanted into a surgically created defect of the proximal ovine tibial growth plate. Examination of implants at 5 week post-operatively revealed transplanted autologous MSC failed to form new cartilage structure at the defect site, but contributed to an increase in formation of a dense fibrous tissue. Importantly, the extent of osteogenesis was diminished, and bone bridge formation was not accelerated due to transplantation of MSCs or the gelatin scaffold. The current study represents the first work that has utilised this ovine large animal model to investigate whether autologous bone marrow derived MSC can be used to initiate regeneration at the injured growth plate

    Greater risk of incident asthma cases in adults with Allergic Rhinitis and Effect of Allergen Immunotherapy: A Retrospective Cohort Study

    Get PDF
    Asthma and rhinitis are often co-morbid conditions. As rhinitis often precedes asthma it is possible that effective treatment of allergic rhinitis may reduce asthma progression. The aim of our study is to investigate history of allergic rhinitis as a risk factor for asthma and the potential effect of allergen immunotherapy in attenuating the incidence of asthma. Hospital-referred non-asthmatic adults, aged 18–40 years between 1990 and 1991, were retrospectively followed up until January and April 2000. At the end of follow up, available subjects were clinically examined for asthma diagnosis and history of allergen specific immunotherapy, second-hand smoking and the presence of pets in the household. A total of 436 non-asthmatic adults (332 subjects with allergic rhinitis and 104 with no allergic rhinitis nor history of atopy) were available for final analyses. The highest OR (odds ratio) associated with a diagnosis of asthma at the end of follow-up was for the diagnosis of allergic rhinitis at baseline (OR, 7.8; 95%CI, 3.1–20.0 in the model containing the covariates of rhinitis diagnosis, sex, second-hand smoke exposure, presence of pets at home, family history of allergic disorders, sensitization to Parietaria judaica; grass pollen; house dust mites; Olea europea: orchard; perennial rye; and cat allergens). Female sex, sensitization to Parietaria judaica and the presence of pets in the home were also significantly predictive of new onset asthma in the same model. Treatment with allergen immunotherapy was significantly and inversely related to the development of new onset asthma (OR, 0.53; 95%CI, 0.32–0.86). In the present study we found that allergic rhinitis is an important independent risk factor for asthma. Moreover, treatment with allergen immunotherapy lowers the risk of the development of new asthma cases in adults with allergic rhinitis

    Estimating a threshold price for CO2 emissions of buildings to improve their energy performance level. Case study of a new Spanish home

    Get PDF
    Energy consumption in homes produces CO2. In many countries, building regulations are being set to enable energy efficiency performance levels to be issued. In Spain, there is a regulated procedure to certify the energy performance of buildings according to their CO2 emissions. Consequently, some software tools have been design to simulate buildings and to obtain their energy consumption and CO2 emissions. In this paper the investment, maintenance and energy consumption costs are calculated for different energy performance levels and for various climatic zones, in a single-family home. According to the results, more energy efficient buildings imply higher construction and maintenance costs, which are not compensated by lower energy costs. Therefore, under current conditions, economic criteria do not support the improvement of the energy efficiency of a dwelling. Among the possible measures to promote energy efficiency, a price on CO2 emissions is to be suggested, including the social cost in the analysis. For this purpose, the cost-optimal methodology is used. In different scenarios for the discount rate y energy prices, various prices for CO2 are obtained, depending on the climatic zone and energy performance level.Ruá Aguilar, MJ.; Guadalajara Olmeda, MN. (2015). Estimating a threshold price for CO2 emissions of buildings to improve their energy performance level. Case study of a new Spanish home. Energy Efficiency. 8(2):183-203. doi:10.1007/s12053-014-9286-2S18320382AICIA. (2009). Escala de calificación energética. Edificios de nueva construcción. Madrid: Instituto para la Diversificación y Ahorro de la Energía, Ministerio de Industria, Turismo y Comercio.Al-Homoud, M. S. (2005). Performance characteristics and practical applications of common building thermal insulation materials. Building and Environment, 40(3), 353–360.Amecke, H. (2012). The impact of energy performances certificates: a survey of German home owners. Energy Policy, 46, 4–14.Andaloro, A., Salomone, R., Ioppolo, G., & Andaloro, L. (2010). Energy certification of buildings: a comparative analysis of progress towards implementation in European countries. Energy Policy, 38(10), 5840–5866.Annunziata, E., Frey, M., & Rizzi, F. (2013). Towards nearly zero-energy buildings: the state-of-art of national regulations in Europe. Energy, 57, 125–133. doi: 10.1016/j.energy.2012.11.049 .Audenaert, A., De Boeck, L., & Roelants, K. (2010). Economic analysis of the profitability of energy-saving architectural measures for the achievement of the EPBD-standard. Energy, 35(7), 2965–2971.Bertrán, A. (2009). Las mediciones en las obras adaptadas al CTE (4th ed.). Granada: Editorial Jorge Loring S.I.Brathal, D., & Langemo, M. (2004). Facilities management: a guide for total workplace design and management. Grand Forks: Knight Printing.Brown, D. W. (1996). Facility maintenance: the manager’s practical guide and handbook. New York: AMACOM American Management Association. New York, NY 10019.Concerted Action EPBD (2008). Implementation of the energy performance of buildings directive. Country reports 2008. Brussels: Directorate General for Energy and Transport, European Commission (available at www.epbd.ca.eu and www.buildup.eu ).Concerted Action EPBD (2011). Implementing the energy performance of buildings directive. Country reports 2011. Brussels: European Union (available at www.epbd.ca.eu and www.buildup.eu ).Davies, H., & Wyatt, D. (2004). Appropriate use or method for durability and service life prediction. Building Research and Information, 32(6), 552–553.Dresner, S., & Ekins, P. (2006). Economic instruments to improve UK home energy efficiency without negative social impacts. Fiscal Studies, 27(1), 47–74.Drury, C. (2008). Management and cost accounting, 7th ed. London.Eurostat European Comission, Instituto de Diversificación y Ahorro de Energía (IDAE), Ministerio de Industria, Energía y Turismo (2011). Proyecto SECH-SPAHOUSEC. Análisis del consumo energético del sector residencial en España. Informe Final. Madrid.Fraunhofer Institute for Systems and Innovation Research ISI (Germany) (2012). Financing the energy efficient transformation of the building sector in the EU. Lessons from the ODYSSEE-MURE project.Garrido, N., Almecija, J. C., Folch, C., Martínez, I. (2011). Certificación energética de edificios. Grupo de Estudios de Energía para la Sostenibilidad (CEES). Cátedra Unesco Sostenibilidad, Universitat Politècnica de Catalunya. (Available at: upcommons.upc.edu/e-prints/bitstream/2117/11820/1/GAS Natural_090406.pdf).Gómez, J. M., & Esteban, M. A. (2010). Sostenibilidad en la edificación. Comparación de dos tipologías constructivas. Rendimiento de los recursos. Ingeniería de Edificación Universitat Politècnica de Catalunya. (Available at: upcommons.upc.edu/pfc/bitstream/2099.1/…/1/PFG_Completo.pdf).Gram-Hanssen, K., Bartiaux, F., Michael Jensen, O., & Cantaert, M. (2007). Do homeowners use energy labels? A comparison between Denmark and Belgium. Energy Policy, 35(5), 2879–2888.Institut de Tecnologia de la Construcció de Catalunya (ITEC) (1991a). Manual de uso y conservación de la vivienda. COAAT Principado de Asturias. Simancas Ediciones S.A. Valladolid.Institut de Tecnologia de la Construcció de Catalunya (ITEC). (1991b). Manteniment de l’edifici. Fitxes (1st ed.). Badalona: Gràfiques Pacífic.Institut de Tecnologia de la Construcció de Catalunya (ITEC). (1991c). Manteniment instal.lacions. Fitxes (1st ed.). Badalona: Gràfiques Pacífic.Institut de Tecnologia de la Construcció de Catalunya (ITEC). (1991d). Manteniment urbanització. Fitxes (1st ed.). Badalona: Gràfiques Pacífic.Institut de Tecnologia de la Construcció de Catalunya (ITEC). (1994). L’actualitat i el cost del manteniment en edificis d’habitatge. Guia pràctic (1st ed.). Barcelona: Gama S.L. Servicios editoriales.Institut de Tecnologia de la Construcció de Catalunya (ITEC). (1996). Ús i manteniment de l’habitatge. Quadern de l’usuari (1st ed.). Zaragoza: Gràfiques Cometa.Institut de Tecnologia de la Construcció de Catalunya (ITEC) (1997). La vivienda: Manual de uso y mantenimient, COAAT de Cantabria. 1ª ed.Institut de Tecnologia de la Construcció de Catalunya (ITEC) (1999). La vivienda: Manual de uso y mantenimiento, COAAT Principado de Asturias. 2ª ed. Simancas Edicionas S.A. Valladolid.Instituto de Diversificación y Ahorro de Energía (IDAE), Ministerio de Industria, Turismo y Comercio (MITYC) (2010). Guía Técnica: Condiciones climáticas exteriores de proyecto, (available at: http://www.minetur.gob.es/energia/desarrollo/eficienciaenergetica/rite/reconocidos/reconocidos/condicionesclimaticas.pdf ).Instituto Eduardo Torroja de Ciencias de la Construcción (IETCC) (2010). Catálogo de Elementos Constructivos del Código Técnico, versión CAT-EC-v06.3-MARZO10. Madrid.Jáber-López, J. T., Valencia-Salazar, I., Peñalvo-López, E., Álvarez-Bel, C., Rivera-López, R., Merino-Hernández, E. (2011). Are energy certification tools for buildings effective? A Spanish case study, Proceedings of the 2011 3rd International Youth Conference on Energetics. Leiria, July 7–9.Johnstone, I. M. (2001a). Energy and mass flows of housing: a model and example. Building and Environment, 36, 27–41.Johnstone, I. M. (2001b). Energy and mass flows of housing: estimating mortality. Building and Environment, 36, 43–51.Kaiser, H. H. (2001). The facilities audit. A process for improving facilities conditions. Arlington: Kirby Lithographic. APPA. The Association of Higher Education Facilities Officers.Kjaerbye, V. H. (2008). Does energy label on residential housing cause energy savings? AKF, Danish Institute of Governmental Research.La Roche, P. (2010). Calculating green house emissions for houses: analysis of the performance of several carbon counting tools in different climates. Informes de la Construcción, 62(517), 61–80.Larsen, B. M., & Nebakken, R. (1997). Norwegian emissions of CO2 1987–1994. Environmental and Resource Economics, 9, 275–290.Laustsen, J. (2008). Energy efficiency requirements in building codes, energy efficiency policies for new buildings. Paris: International Energy Agency information paper.Linares, P., & Labandeira, X. (2010). Energy efficiency: economics and policy. Journal of Economic Surveys, 24(3), 573–592.Liska, R. W. (2000). Means facilities maintenance standards. Kingston: R.S. Means Company, Inc. Construction Publishers & Consultants.Majcen, D., Itard, H., & Visscher, H. (2013). Theoretical vs. actual energy consumption of labelled dwellings in the Netherlands: discrepancies and policy implications. Energy Policy, 54, 125–136.Mercader, M. P., Olivares, M., & Ramírez de Arellano, A. (2012). Modelo de cuantificación del consumo energético en edificación. Informes de la Construcción, 62(308), 567–582.Ministry of Development of Spain. Directorate for Architecture, Housing and Planning. Report on cost optimal calculations and comparison with the current and future energy performance requirements of buildings in Spain. Version 1.1, 7th June 2013.Pérez-Lombard, L., Ortiz, J., & González, R. (2009). A review of benmarching, rating and labelling concepts within the framework of building energy certification schemes. Energy and Buildings, 41(3), 272–278.Piper, J. E. (1995). Handbook of facility management: tools and techniques, formulas and tables. Upper Saddle River: Prentice Hall Inc.Popescu, D., Bienert, S., Schützenhofer, C., & Boazu, R. (2012). Impact of energy efficiency measures on the economic value of buildings. Applied Energy, 89(1), 454–463.Ramírez de Arellano, A. (2004). Presupuestación de obras. 3ª ed. Universidad de Sevilla. Secretariado de Publicaciones. Colección Manuales Universitarios, 37.Rodríguez-González, A. B., Vinagre-Díaz, J. J., Caañamo, A. J., & Wilby, M. R. (2011). Energy and buildings, 43(4), 980–987.Ruá, M. J., & Guadalajara, N. (2013). Application of compromise programming to a semi-detached housing development in order to balance economic and environmental criteria. Journal of the Operational Research Society, 64, 459–468.Ruá, M. J., & Guadalajara, N. (2014). Using the building energy rating software for mathematically modelling operation costs in a simulated home. International Journal of Computer Mathematics. doi: 10.1080/00207160.2014.892588 .Ruá, M. J., & López-Mesa, B. (2012). Certificación energética de edificios en España y sus implicaciones económicas. Informes de la Construcción, 64(527), 307–318.Rudbeck, C. (2002). Service life of building envelope components: making it operational in economical assessment. Construction and Building Materials, 16(2), 83–89.Ruiz, M. C., & Romero, E. (2011). Energy saving in the conventional design of a Spanish house using thermal simulation. Energy and Building, 43(11), 3226–3235.Sanstad, A. H., Blumstein, C., & Stoff, S. E. (1995). How high are option values in energy-efficiency investments? Energy Policy, 23(9), 739–743.Sumner, J., Bird, L., Smith, H. (2009). Carbon taxes: a review of experience and policy design consideration. Technical Report NREL/TP-6A2-47312. National Renewable Energy Laboratory. US Department of Energy.Tuominen, P., Forsström, J., & Honkatukia, J. (2013). Economic effects of energy efficiency improvements in the Finnish building stock. Energy Policy, 52, 181–189.Ucar, A., & Balo, F. (2009). Effect of fuel type on the optimum thickness of selected insulation materials for the four different climatic regions of Turkey. Applied Energy, 86(5), 730–736.Universidad Politécnica De Madrid. Departamento de Construcción y Vías Rurales (2009). Evaluación de los costes constructivos y consumos energéticos derivados de la calificación energética de viviendas. Precost&E. Fase1.Uzsilaityte, L., & Martinaitis, V. (2010). Search for optimal solution of public building renovation in terms of life cycle. Journal of Environmental Engineering and Landscape Management, 18(2), 102–110.Verbruggen, A. (2012). Financial appraisal of efficiency investments: why the good may be the worst enemy of the best. Energy Efficiency, 5, 571–582
    corecore