9,885 research outputs found

    On the Computation of Power in Volume Integral Equation Formulations

    Full text link
    We present simple and stable formulas for computing power (including absorbed/radiated, scattered and extinction power) in current-based volume integral equation formulations. The proposed formulas are given in terms of vector-matrix-vector products of quantities found solely in the associated linear system. In addition to their efficiency, the derived expressions can guarantee the positivity of the computed power. We also discuss the application of Poynting's theorem for the case of sources immersed in dissipative materials. The formulas are validated against results obtained both with analytical and numerical methods for scattering and radiation benchmark cases

    Method for fabricating a low stress x-ray mask using annealable amorphous refractory compounds

    Get PDF
    X‐ray masks have been fabricated by depositing a compressively stressed refractory material on a wafer, annealing to a zero stress state, and then forming the membrane. Amorphous TaSiN and TaSi alloys deposited with a magnetron sputter tool have been extensively characterized in terms of resistivity, composition, defectivity, surface roughness, and crystalline state. Optimization in terms of these parameters has resulted in base line selection of absorber films of the following compositions: Ta_(61)Si_(17)N_(21) and Ta_(75)Si_(23). The process is shown to be extendable to an entire class of amorphous annealable refractory materials. Careful studies of deposition and annealing conditions have resulted in a 4× reduction of image placement to the 30 nm maximum vector level. Finally, the importance of stress gradients is experimentally verified

    The Distance and Size of the Red Hypergiant NML Cyg from VLBA and VLA Astrometry

    Full text link
    We have measured the annual parallax and proper motion of NML Cyg from multiple epoch VLBA observations of the circulstellar H2O and SiO masers. The measured parallax of NML Cyg is 0.620+/-0.047 mas, corresponding to a distance of 1.61+/-0.12 kpc. The measured proper motion of NML Cyg is mu_x = -1.55+/-0.42 mas/yr eastward and mu_y= -4.59+/-0.41 mas/yr northward. Both Both the distance and proper motion are consistent with that of Cyg OB2, within their joint uncertainty, confirming their association. Taking into consideration molecular absorption signatures seen toward NML Cyg, we suggest that NML Cyg lies on the far side of the Cyg OB2 association. The stellar luminosity revised with our distance brings NML Cyg significantly below the empirical luminosity limit for a red supergiant. Using the VLA observation the radio photosphere and the SiO maser as a phase reference, we partially resolve the radio photosphere of NML Cyg at 43 GHz and find its diameter is about 44 mas, suggesting an optical stellar diameter of 22 mas, if the size of radio photosphere is 2 times the optical photosphere. Based on the position of circumstellar SiO masers relative to the radio photosphere, we estimate the absolute position of NML Cyg at epoch 2008.868 to be R.A. = 20h46m25.5382s +/- 0.0010s, Decl. = 40d06'59.379" +/- 0.015". The peculiar motions of NML Cyg, the average of stars in Cyg OB2, and four other star-forming regions rules out that an expanding "Stroemgren sphere" centered on Cyg OB2 is responsible for the kinematics of the Cygnus X region.Comment: 15 pages, 11 figures, accepted by A&

    Relationship between cardiovascular risk and lipid testing in one health care system: a retrospective cohort study.

    Get PDF
    BackgroundThe US Preventive Services Taskforce (USPSTF) recommends routine lipid screening beginning age 35 for men [1]. For women age 20 and older, as well as men age 20-34, screening is recommended if cardiovascular risk factors are present. Prior research has focused on underutilization but not overuse of lipid testing. The objective is to document over- and under-use of lipid testing in an insured population of persons at low, moderate and high cardiovascular disease (CVD) risk for persons not already on statins.MethodsThe study is a retrospective cohort study that included all adults without prior CVD who were continuously enrolled in a large integrated healthcare system from 2005 to 2010. Measures included lipid test frequency extracted from administrative data and Framingham cardiovascular risk equations applied using electronic medical record data. Five year lipid testing patterns were examined by age, sex and CVD risk. Generalized linear models were used to estimate the relative risk for over testing associated with patient characteristics.ResultsAmong males and females for whom testing is not recommended, 35.8 % and 61.5 % received at least one lipid test in the prior 5 years and 8.4 % and 24.4 % had two or more. Over-testing was associated with age, race, comorbidity, primary care use and neighborhood income. Among individuals at moderate and high-risk (not already treated with statins) and for whom screening is recommended, between 21.4 % and 25.1 % of individuals received no screening in the prior 5 years.ConclusionsBased on USPSTF lipid screening recommendations, this study documents substantial over-testing among individuals with low CVD risk and under-testing among individuals with moderate to high-risk not already on statins. Opportunity exists to better focus lipid screening efforts appropriate to CVD risk

    The distance to the Orion Nebula

    Full text link
    We have used the Very Long Baseline Array to measure the trigonometric parallax of several member stars of the Orion Nebula Cluster showing non-thermal radio emission. We have determined the distance to the cluster to be 414 +/- 7 pc. Our distance determination allows for an improved calibration of luminosities and ages of young stars. We have also measured the proper motions of four cluster stars which, when accurate radial velocities are measured, will put strong constraints on the origin of the cluster.Comment: 13 pages, 3 figures, to appear in Astronomy & Astrophyisc

    Crankcase sampling of PM from a fired and motored compression ignition engine

    Get PDF
    Crankcase emissions are a complex mixture of combustion products and aerosol generated from lubrication oil. The crankcase emissions contribute substantially to the total particulate matter (PM) emitted from an engine. Environment legislation demands that either the combustion and crankcase emissions are combined to give a total measurement, or the crankcase gases are re-circulated back into the engine. There is a lack of understanding regarding the physical processes that generate crankcase aerosols, with a paucity of information on the size/mass concentrations of particles present in the crankcase. In this study the particulate matter crankcase emissions were measured from a fired and motored 4 cylinder compression ignition engine at a range of speeds and crankcase locations. A sequence of sampling equipment was used to characterise the emissions in the size range 5 nm - 19 μm; Cambustion DMS500 fast particulate spectrometer, TSI Scanning Mobility Particle Sizer (SMPS), TSI™ Condensation Particle Counter (CPC) and, TSI™ Aerodynamic Particle Sizer (APS). The combination of the two test engines and range of sampling equipment provided new information on the generation and behavior of aerodynamic particulate matter within an engine crankcase. Data is presented for the effect of controlled parameter changes on number distributions over the measured particle size range. A complex lognormal bimodal size distribution of sub micron accumulation mode particles was present in the crankcase of both engines at a low idle speed of 900rpm. At 1400rpm this complex distribution was not present. Increasing the engine load, on the fired engine, initially reduced the particle number concentration with a final significant increase in particle number concentration at 75% load. At 900 rpm 50% load there was a single strong peak at 32nm in the rocker cover however sampling from the push rod gallery and sump showed a strongly bimodal distribution with peaks at 32nm and 133nm. All other sampling data, from the fired engine, was consistent at each sampling location. The SMPS results, 15-665nm, on the motored engine showed location dependency, with the highest number concentration of particles present in the push rod gallery

    Comparative outcomes between COVID-19 and influenza patients placed on veno-venous extracorporeal membrane oxygenation for severe ARDS

    Get PDF
    Background ECMO is an established supportive adjunct for patients with severe, refractory ARDS from viral pneumonia. However, the exact role and timing of ECMO for COVID-19 patients remains unclear. Methods We conducted a retrospective comparison of the first 32 patients with COVID-19-associated ARDS to the last 28 patients with influenza-associated ARDS placed on V-V ECMO. We compared patient factors between the two cohorts and used survival analysis to compare the hazard of mortality over sixty days post-cannulation.Results COVID-19 patients were older (mean 47.8 vs. 41.2 years, p = 0.033), had more ventilator days before cannulation (mean 4.5 vs. 1.5 days, p < 0.001). Crude in-hospital mortality was significantly higher in the COVID-19 cohort at 65.6% (n = 21/32) versus 36.3% (n = 11/28, p = 0.041). The adjusted hazard ratio over sixty days for COVID-19 patients was 2.81 (95% CI 1.07, 7.35) after adjusting for age, race, ECMO-associated organ failure, and Charlson Comorbidity Index. Conclusion ECMO has a role in severe ARDS associated with COVID-19 but providers should carefully weigh patient factors when utilizing this scarce resource in favor of influenza pneumonia

    Two-Body Random Ensembles: From Nuclear Spectra to Random Polynomials

    Full text link
    The two-body random ensemble (TBRE) for a many-body bosonic theory is mapped to a problem of random polynomials on the unit interval. In this way one can understand the predominance of 0+ ground states, and analytic expressions can be derived for distributions of lowest eigenvalues, energy gaps, density of states and so forth. Recently studied nuclear spectroscopic properties are addressed.Comment: 8 pages, 4 figures. To appear in Physical Review Letter

    Ingredients of a Casimir analog computer

    Full text link
    We present the basic ingredients of a technique to compute quantum Casimir forces at micrometer scales using antenna measurements at tabletop, e.g. centimeter, scales, forming a type of analog computer for the Casimir force. This technique relies on a correspondence that we derive between the contour integration of the Casimir force in the complex frequency plane and the electromagnetic response of a physical dissipative medium in a finite, real frequency bandwidth
    corecore