873 research outputs found

    Revisiting an Integrated Health Informatics and Technology Curriculum Model

    Get PDF
    The shortage of health information technology workforce is quite significant in the health industry. The traditional education approach may not be effective enough to train college students to be an HIT workforce that requires both academic knowledge and extensive hands-on experiences in both healthcare and information technology. This paper presents an Integrated Health Informatics and Technology Curriculum Model to collapse the campus boundaries between regional Intermediate School Districts, Community Colleges, and a Four-Year health informatics and information management program to support expedited education with sufficient hands-on experiences in health informatics and technology. This model has been pilot tested by the Health Informatics and Information management Program at Western Michigan University. Early findings are very positive. More study and promotion of this curriculum model shall be continued

    EXPRESSION OF HUMAN PROTEIN C IN MAMMARY TISSUE OF TRANSGENIC MAMMALS

    Get PDF
    Recombinant protein C characterized by a high percentage of active protein can be obtained in the milk of transgenic mammals that incorporate DNAs according to the present invention. Transgenic mammals of the present invention are produced by introducing into developing embryos DNA that encodes protein C, such that the DNA is stably incorporated in the DNA of germ line cells of the mature mammals and inherited in normal, mendelian fashion

    Evidence for strain-specific exometabolomic responses of the coccolithophore Emiliania huxleyi to grazing by the dinoflagellate oxyrrhis marina

    Get PDF
    Ā© The Author(s), 2016. This article is distributed under the terms of the Creative Commons Attribution License. The definitive version was published in Frontiers in Marine Science 3 (2016): 1, doi:10.3389/fmars.2016.00001.The coccolithophore Emiliania huxleyi forms massive blooms and plays a critical role in global elemental cycles, sequestering significant amounts of atmospheric carbon dioxide on geological time scales via production of calcium carbonate coccoliths and emitting dimethyl sulfoniopropionate (DMSP), which has the potential for increasing atmosph-eric albedo. Because grazing in pelagic systems is a major top-down force structuring microbial communities, the influence of grazers on E. huxleyi populations has been of interest to researchers. Roles of DMSP (and related metabolites) in interactions between E. huxleyi and protist grazers have been investigated, however, little is known about the release of other metabolites that may influence, or be influenced by, such grazing interactions. We used high-resolution mass spectrometry in an untargeted approach to survey the suite of low molecular weight compounds released by four different E. huxleyi strains in response to grazing by the dinoflagellate Oxyrrhis marina. Overall, a strikingly small number of metabolites were detected from E. huxleyi and O. marina cells, but these were distinctly informative to construct metabolic footprints. At most, E. huxleyi strains shared 25% of released metabolites. Furthermore, there appeared to be no unified metabolic response in E. huxleyi strains to grazing; rather, these responses were strain specific. Concentrations of several metabolites also positively correlated with grazer activities, including grazing, ingestion, and growth rates; however, no single metabolite responded uniformly across all strains of E. huxleyi tested. Regardless, grazing clearly transformed the constituents of dissolved organic matter produced by these marine microbes. This study addresses several technical challenges, and presents a platform to further study the influence of chemical cues in aquatic systems and demonstrates the impact of strain diversity and grazing on the complexity of dissolved organic matter in marine systems.Funding for this work was provided by the Gordon and Betty Moore Foundation, Grant #3301 awarded to A Vardi, BAS. Van Mooy, K Bidle, MJ, and TM. Additional funding for this work was provided by an award from the Flatley Discovery Lab to TM

    New record in the Hawaiian Islands of Orasema minutissima (Hymenoptera: Eucharitidae), an ant-parasitic wasp and a potential biocontrol agent against the Little Fire Ant, Wasmannia auropunctata (Hymenoptera: Formicidae)

    Get PDF
    Orasema minutissima Howard (Hymenoptera: Eucharitidae) is recorded fromthe Hawaiian Islands for the first time. It has been established on the island of Hawai?isince at least 2019. The wasp is a parasitoid of the immature stages of Pheidole andWasmannia (Formicidae: Myrmicinae), both of which are significant pests on several ofthe Hawaiian Islands. Already found in substantial numbers, the wasp is a potential biological control agent for Wasmannia auropunctata, the Little Fire Ant.Fil: Heraty, John Michael. University of California; Estados UnidosFil: Rogers, Valle D.. University of California; Estados UnidosFil: Johnson, M. Tracy. Institute of Pacific Islands Forestry; Estados UnidosFil: Perreira, Williams D.. No especifĆ­ca;Fil: Baker, Austin J.. University of California; Estados UnidosFil: Bitume, Ellyn. Institute of Pacific Islands Forestry; Estados UnidosFil: Murray, Elizabeth. Washington State University; Estados UnidosFil: Varone, Laura. FundaciĆ³n para el Estudio de Especies Invasivas; Argentina. Consejo Nacional de Investigaciones CientĆ­ficas y TĆ©cnicas; Argentin

    Sea anemones may thrive in a high CO2 world

    Get PDF
    Increased seawater pCO 2, and in turn 'ocean acidification' (OA), is predicted to profoundly impact marine ecosystem diversity and function this century. Much research has already focussed on calcifying reef-forming corals (Class: Anthozoa) that appear particularly susceptible to OA via reduced net calcification. However, here we show that OA-like conditions can simultaneously enhance the ecological success of non-calcifying anthozoans, which not only play key ecological and biogeochemical roles in present day benthic ecosystems but also represent a model organism should calcifying anthozoans exist as less calcified (soft-bodied) forms in future oceans. Increased growth (abundance and size) of the sea anemone (Anemonia viridis) population was observed along a natural CO 2 gradient at Vulcano, Italy. Both gross photosynthesis (P G) and respiration (R) increased with pCO 2 indicating that the increased growth was, at least in part, fuelled by bottom up (CO 2 stimulation) of metabolism. The increase of P G outweighed that of R and the genetic identity of the symbiotic microalgae (Symbiodinium spp.) remained unchanged (type A19) suggesting proximity to the vent site relieved CO 2 limitation of the anemones' symbiotic microalgal population. Our observations of enhanced productivity with pCO 2, which are consistent with previous reports for some calcifying corals, convey an increase in fitness that may enable non-calcifying anthozoans to thrive in future environments, i.e. higher seawater pCO 2. Understanding how CO 2-enhanced productivity of non- (and less-) calcifying anthozoans applies more widely to tropical ecosystems is a priority where such organisms can dominate benthic ecosystems, in particular following localized anthropogenic stress. Ā© 2012 Blackwell Publishing Ltd

    Spaceflight Radiation Health program at the Lyndon B. Johnson Space Center

    Get PDF
    The Johnson Space Center leads the research and development activities that address the health effects of space radiation exposure to astronaut crews. Increased knowledge of the composition of the environment and of the biological effects of space radiation is required to assess health risks to astronaut crews. The activities at the Johnson Space Center range from quantification of astronaut exposures to fundamental research into the biological effects resulting from exposure to high energy particle radiation. The Spaceflight Radiation Health Program seeks to balance the requirements for operational flexibility with the requirement to minimize crew radiation exposures. The components of the space radiation environment are characterized. Current and future radiation monitoring instrumentation is described. Radiation health risk activities are described for current Shuttle operations and for research development program activities to shape future analysis of health risk

    Staphylococcus aureus Infections in US Veterans, Maryland, USA, 1999ā€“20081

    Get PDF
    Trends in Staphylococcus aureus infections are not well described. To calculate incidence in overall S. aureus infection and invasive and noninvasive infections according to methicillin susceptibility and location, we conducted a 10-year population-based retrospective cohort study (1999ā€“2008) using patient-level data in the Veterans Affairs Maryland Health Care System. We found 3,674 S. aureus infections: 2,816 (77%) were noninvasive; 2,256 (61%) were methicillin-resistant S. aureus (MRSA); 2,517 (69%) were community onset, and 1,157 (31%) were hospital onset. Sixty-one percent of noninvasive infections were skin and soft tissue infections; 1,112 (65%) of these were MRSA. Ten-year averaged incidence per 100,000 veterans was 749 (Ā± 132 SD, range 549ā€“954) overall, 178 (Ā± 41 SD, range 114ā€“259) invasive, and 571 (Ā± 152 SD, range 364ā€“801) noninvasive S. aureus infections. Incidence of all S. aureus infections significantly increased (p<0.001), driven by noninvasive, MRSA, and community-onset infections (p<0.001); incidence of invasive S. aureus infection significantly decreased (p<0.001)

    A bacterial quorum-sensing precursor induces mortality in the marine coccolithophore, Emiliania huxleyi

    Get PDF
    Ā© The Author(s), 2016. This article is distributed under the terms of the Creative Commons Attribution License. The definitive version was published in Frontiers in Microbiology 7 (2016): 59, doi:10.3389/fmicb.2016.00059.Interactions between phytoplankton and bacteria play a central role in mediating biogeochemical cycling and food web structure in the ocean. However, deciphering the chemical drivers of these interspecies interactions remains challenging. Here, we report the isolation of 2-heptyl-4-quinolone (HHQ), released by Pseudoalteromonas piscicida, a marine gamma-proteobacteria previously reported to induce phytoplankton mortality through a hitherto unknown algicidal mechanism. HHQ functions as both an antibiotic and a bacterial signaling molecule in cellā€“cell communication in clinical infection models. Co-culture of the bloom-forming coccolithophore, Emiliania huxleyi with both live P. piscicida and cell-free filtrates caused a significant decrease in algal growth. Investigations of the P. piscicida exometabolome revealed HHQ, at nanomolar concentrations, induced mortality in three strains of E. huxleyi. Mortality of E. huxleyi in response to HHQ occurred slowly, implying static growth rather than a singular loss event (e.g., rapid cell lysis). In contrast, the marine chlorophyte, Dunaliella tertiolecta and diatom, Phaeodactylum tricornutum were unaffected by HHQ exposures. These results suggest that HHQ mediates the type of inter-domain interactions that cause shifts in phytoplankton population dynamics. These chemically mediated interactions, and other like it, ultimately influence large-scale oceanographic processes.This research was support through funding from the Gordon and Betty Moore Foundation through Grant GBMF3301 to MJ and TM; NIH grant from the National Institute of Allergy and Infectious Disease (NIAID ā€“ 1R21Al119311-01) to TM and KW; the National Science Foundation (OCE ā€“ 1313747) and US National Institute of Environmental Health Science (P01-ES021921) through the Oceans and Human Health Program to BM. Additional financial support was provided to TM from the Flatley Discovery Lab
    • ā€¦
    corecore