2,582 research outputs found

    Policy Decisions and Research in Economics and Industrial Relations: An Exchange of Views: Comment

    Get PDF
    [Excerpt] John Dunlop has presented what are certainly some of the most provocative remarks to appear in a scholarly journal in the labor field in many years. We find much to agree with in his remarks; however, we also find many areas where we feel he condemns research because of his overly optimistic expectations about its ability to contribute to the policy process, and other areas where he appears to be unaware that research in labor economics has already contributed fairly directly to policy decisions

    Invariant expectations and vanishing of bounded cohomology for exact groups

    Full text link
    We study exactness of groups and establish a characterization of exact groups in terms of the existence of a continuous linear operator, called an invariant expectation, whose properties make it a weak counterpart of an invariant mean on a group. We apply this operator to show that exactness of a finitely generated group GG implies the vanishing of the bounded cohomology of GG with coefficients in a new class of modules, which are defined using the Hopf algebra structure of â„“1(G)\ell_1(G).Comment: Final version, to appear in the Journal of Topology and Analysi

    Optical Magnetometer Array for Fetal Magnetocardiography

    Full text link
    We describe an array of spin-exchange relaxation free optical magnetometers designed for detection of fetal magnetocardiography (fMCG) signals. The individual magnetometers are configured with a small volume with intense optical pumping, surrounded by a large pump-free region. Spin-polarized atoms that diffuse out of the optical pumping region precess in the ambient magnetic field and are detected by a probe laser. Four such magnetometers, at the corners of a 7 cm square, are configured for gradiometry by feeding back the output of one magnetometer to a field coil to null uniform magnetic field noise at frequencies up to 200 Hz. Using this array, we present the first measurements of fMCG signals using an atomic magnetometer

    Cold Atmospheric Pressure Plasmas for Food Applications

    Get PDF
    Successfully distributing shelf food requires treatment to eliminate microorganisms. Current chemical methods, such as chlorine wash, can alter food quality while only being effective for a limited time. Cold atmospheric pressure plasmas (CAPs) can eradicate the microorganisms responsible for food spoilage and foodborne illness. Optimizing CAP treatments requires understanding the reactive species generated and relating them to eradication efficiency. Recent studies have used optical emission spectroscopy (OES) to determine the species generated in a sealed package that would hold food. In this study,we supplement the OES results with optical absorption spectroscopy (OAS) using the same gases (helium, nitrogen, compressed air, humid air) to elucidate plasma chemistry and temperature. We first reproduce previous results using a new setup while assessing the impact of the package and surrounding box on the plasma spectrum. A UV-Vis light lightsource is emitted through a series of lenses placed next to the plasma. Analysis using SpecAir software allows the identification of absorbed peaks and the calculation of rotational, vibrational, and electron temperatures. Results show that the air plasma produces a primary absorbance peak at a wavelength of ~260 nm, demonstrating the diagnostic capability of this technique . Species generation declined dramatically during the first two minutes of treatment with the effect leveling off thereafter. These findings elucidate reactive species generation within the plasma to optimize CAP systems for microorganism decontamination

    Cardiopulmonary bypass, myocardial management, and support techniques Changes in autonomic response of the cerebral circulation after normothermic extracorporeal circulation

    Get PDF
    AbstractPatients who undergo cardiopulmonary bypass frequently have neuropsychologic dysfunction. This study was undertaken to determine whether altered cerebral perfusion and vascular responses may in part lead to these neuropsychologic changes. Pigs were placed on normothermic cardiopulmonary bypass for 2 hours. Basal cerebral blood flow and in vivo responses to administration by internal carotid artery of neuronally released vasoactive substances were evaluated before and 5 to 15 minutes after termination of cardiopulmonary bypass. Another group of pigs were placed on cardiopulmonary bypass for 2 hours and then perfused off bypass for 1 additional hour. In vitro responses of cerebral arterial microvessels (100 to 175 μm) from both groups were examined in a pressurized (40 mm Hg) no-flow state with videomicroscopy. Vessels from uninstrumented pigs served as control preparations for in vitro studies. Cerebrovascular resistance and cerebral perfusion were maintained constant during cardiopulmonary bypass and after separation from bypass. The internal carotid artery infusion of acetylcholine (cholinergic agonist) caused increased internal carotid artery blood flow before cardiopulmonary bypass but decreased blood flow after cardiopulmonary bypass. After 2 hours of cardiopulmonary bypass, the increase in internal carotid artery blood flow induced by isoproterenol (a β-adrenoceptor agonist) was reduced, whereas the response to sodium nitroprusside (a guanylate cyclase activator) was unchanged. In vitro acetylcholine-induced microvascular vasodilation was converted to a contractile response and isoproterenol elicited less relaxation after 2 hours of cardiopulmonary bypass. One hour of cerebral perfusion after cardiopulmonary bypass caused a further reduction in isoproterenol-induced relaxation but had no further effect on the cholinergically mediated response. In vitro relaxation responses to sodium nitroprusside and forskolin (an adenylate cyclase activator) were similar in all experimental groups, suggesting that second-messenger mechanisms remain intact after normothermic cardiopulmonary bypass. In conclusion, basal cerebrovascular resistance and internal carotid artery blood flow are maintained if the systemic circulation and pressure are supported with fluid administration after cardiopulmonary bypass. Agonist-induced vasodilation of cerebral microvessels to cholinergic and β-adrenoceptor stimulation are selectively impaired after normothermic cardiopulmonary bypass, whereas second-messenger mechanisms remain intact. (J Thorac Cardiovasc Surg 1996;112:450-61

    Determinants of Beat-to-Beat Variability of Repolarization Duration in the Canine Ventricular Myocyte: A Computational Analysis

    Get PDF
    Beat-to-beat variability of repolarization duration (BVR) is an intrinsic characteristic of cardiac function and a better marker of proarrhythmia than repolarization prolongation alone. The ionic mechanisms underlying baseline BVR in physiological conditions, its rate dependence, and the factors contributing to increased BVR in pathologies remain incompletely understood. Here, we employed computer modeling to provide novel insights into the subcellular mechanisms of BVR under physiological conditions and during simulated drug-induced repolarization prolongation, mimicking long-QT syndromes type 1, 2, and 3. We developed stochastic implementations of 13 major ionic currents and fluxes in a model of canine ventricular-myocyte electrophysiology. Combined stochastic gating of these components resulted in short- and long-term variability, consistent with experimental data from isolated canine ventricular myocytes. The model indicated that the magnitude of stochastic fluctuations is rate dependent due to the rate dependence of action-potential (AP) duration (APD). This process (the “active” component) and the intrinsic nonlinear relationship between membrane current and APD (“intrinsic component”) contribute to the rate dependence of BVR. We identified a major role in physiological BVR for stochastic gating of the persistent Na+ current (INa) and rapidly activating delayed-rectifier K+ current (IKr). Inhibition of IKr or augmentation of INa significantly increased BVR, whereas subsequent β-adrenergic receptor stimulation reduced it, similar to experimental findings in isolated myocytes. In contrast, β-adrenergic stimulation increased BVR in simulated long-QT syndrome type 1. In addition to stochastic channel gating, AP morphology, APD, and beat-to-beat variations in Ca2+ were found to modulate single-cell BVR. Cell-to-cell coupling decreased BVR and this was more pronounced when a model cell with increased BVR was coupled to a model cell with normal BVR. In conclusion, our results provide new insights into the ionic mechanisms underlying BVR and suggest that BVR reflects multiple potentially proarrhythmic parameters, including increased ion-channel stochasticity, prolonged APD, and abnormal Ca2+ handling
    • …
    corecore