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Abstract

Beat-to-beat variability of repolarization duration (BVR) is an intrinsic characteristic of cardiac function and a better marker
of proarrhythmia than repolarization prolongation alone. The ionic mechanisms underlying baseline BVR in physiological
conditions, its rate dependence, and the factors contributing to increased BVR in pathologies remain incompletely
understood. Here, we employed computer modeling to provide novel insights into the subcellular mechanisms of BVR
under physiological conditions and during simulated drug-induced repolarization prolongation, mimicking long-QT
syndromes type 1, 2, and 3. We developed stochastic implementations of 13 major ionic currents and fluxes in a model of
canine ventricular-myocyte electrophysiology. Combined stochastic gating of these components resulted in short- and
long-term variability, consistent with experimental data from isolated canine ventricular myocytes. The model indicated that
the magnitude of stochastic fluctuations is rate dependent due to the rate dependence of action-potential (AP) duration
(APD). This process (the ‘‘active’’ component) and the intrinsic nonlinear relationship between membrane current and APD
(‘‘intrinsic component’’) contribute to the rate dependence of BVR. We identified a major role in physiological BVR for
stochastic gating of the persistent Na+ current (INa) and rapidly activating delayed-rectifier K+ current (IKr). Inhibition of IKr or
augmentation of INa significantly increased BVR, whereas subsequent b-adrenergic receptor stimulation reduced it, similar
to experimental findings in isolated myocytes. In contrast, b-adrenergic stimulation increased BVR in simulated long-QT
syndrome type 1. In addition to stochastic channel gating, AP morphology, APD, and beat-to-beat variations in Ca2+ were
found to modulate single-cell BVR. Cell-to-cell coupling decreased BVR and this was more pronounced when a model cell
with increased BVR was coupled to a model cell with normal BVR. In conclusion, our results provide new insights into the
ionic mechanisms underlying BVR and suggest that BVR reflects multiple potentially proarrhythmic parameters, including
increased ion-channel stochasticity, prolonged APD, and abnormal Ca2+ handling.
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Introduction

Beat-to-beat variability of repolarization duration (BVR) is an

intrinsic characteristic of cardiac function that can be observed at

multiple scales, from temporal variations in action-potential (AP)

duration (APD) of the single cardiac myocyte to instability of the

QT interval on the body-surface ECG [1–3]. When increased by

adverse repolarization changes, it is a better marker of proar-

rhythmia than repolarization prolongation per se in various

experimental models of torsades-de-pointes ventricular tachycar-

dia [4–6] and in human cardiac pathologies [2,7]. Recently, we

reported an important rate-dependent role for abnormal Ca2+

handling and the slowly activating delayed-rectifier K+ current

(IKs) in the increased BVR observed during b-adrenergic

stimulation in single canine ventricular myocytes [8]. However,

the exact mechanisms underlying BVR and its rate dependence

under physiological conditions, as well as the various factors

contributing to exaggerated BVR in pathological conditions,

remain incompletely understood.

Computational models of cardiac myocyte electrophysiology

have a rich history, dating back more than 50 years [9]. Recent

models have provided detailed descriptions of various cardiac cell

types in different species. They have created insight into the role of

the different ion channels in rate-dependent alterations in
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repolarization, have helped to elucidate arrhythmogenic mecha-

nisms in various pathological conditions, and have facilitated

analysis of the integration of regulatory pathways and electro-

physiological responses (reviewed in [10–12]). However, to date

most computational models are deterministic and have an APD

that converges to a fixed steady state or a limit cycle (fixed

sequence of APDs; e.g., APD alternans) for a given pacing cycle

length (CL). As such, these models are unsuitable for the study of

BVR.

Tanskanen et al. [13] were among the first to investigate the

effect of stochastic properties of local-control Ca2+ models on

ventricular repolarization. They showed that a variable occur-

rence of arrhythmogenic early afterdepolarizations (EADs) could

be explained by the stochastic gating of the L-type Ca2+ (ICaL)

channel. In contrast, Sato et al. [14] described temporal

repolarization variability due to the chaotic occurrence of ICaL-

mediated EADs in a deterministic model of the H2O2-treated

rabbit ventricular myocyte. These authors provided strong

evidence that noise-induced transitions between states were

insufficient to account for the large APD fluctuations observed

under their experimental conditions. Instead, these transitions

were intrinsically chaotic, although stochastic fluctuations could

potentiate the complexity of the dynamics [15]. However, none of

these studies addressed BVR under physiological conditions or

under pathological conditions in the absence of EADs. Recently,

the role of stochastic ion-channel gating in repolarization

variability under physiological conditions has been described in

computational studies by Lemay et al. [16] and Pueyo et al. [17].

These authors found that stochastic gating of selected ion

channels, notably (late) INa and IKs, could affect global BVR,

quantified as the coefficient of APD variability.

A detailed investigation of the contribution of all major ionic

processes to BVR in physiological and pathological conditions,

including a quantitative comparison of short-term variability

(STV; which includes differences between consecutive APs) to

experimental data, has not yet been performed and was the aim

of this study. We developed a stochastic version of our recently

published model of the canine ventricular myocyte including

b-adrenergic stimulation [18]. Stochastic formulations of 13 major

ion channels and active ion transporters were included, and APD

dynamics were compared to results obtained in isolated canine

ventricular myocytes. We employed the model to obtain novel

insights into the quantitative contribution of individual electro-

physiological processes to cellular BVR under physiological

conditions and the factors contributing to increased BVR during

pathological conditions.

Results

Stochastic channel gating contributes to BVR
AP recordings from isolated canine ventricular myocytes

showed beat-to-beat variability in APD (Figure 1A, top panel)

consistent with previous reports [1,8]. In contrast, under

physiological conditions, APD in the deterministic model (an

extension of the Hund-Rudy model of the canine ventricular

myocyte [19], incorporating localized b-adrenergic signaling

pathways, as described by Heijman et al. [18]) converged to a

steady state without APD variability (Figure 1A, second panel). In

previous research, stochastic processes were simulated using either

stochastic differential equations [17,20], or by simulating stochas-

tic state transitions (channel gating) in the Markov models of

various ion channels [13,21,22]. Application of both methodolo-

gies to the Markov model of IKr resulted in APD variability

(Figure 1A, third and fourth panel). However, these two

approaches showed different temporal dynamics (Figure 1B).

Poincaré plots of APDi+1 versus APDi have a circular shape under

these conditions in experimental recordings and in simulations

with stochastic channel gating, indicating similar magnitudes of

short- (STV) and long-term (LTV) variability (STV or

LTV = average distance perpendicular to or along the line of

identity, respectively; Figure 1B, inset). In contrast, BVR in

simulations employing stochastic differential equations of gating

variables was predominantly long term, resulting in a STV-to-

LTV ratio that was markedly different from experimental

recordings.

Ionic contributors to BVR in physiological conditions
To obtain insight into the direct contribution of the stochastic

gating of ion currents/fluxes to whole-cell BVR, we performed

simulations with stochastic formulations of each individual

channel/pump/transporter in an otherwise deterministic model

at CL of 500, 1000, and 2000 ms (Figure 2A). The number of

channels underlying each current was estimated based on

experimentally obtained single-channel conductance and whole-

cell conductance in the model (see Section 2.5 of Text S1). To

investigate the sensitivity of this parameter, we simulated normal

channel density as well as a 5-fold increase or decrease in channel

density (offset by a reciprocal change in single-channel conduc-

tance to maintain the same total current). A lower channel density

(with larger single-channel conductance) resulted in a larger STV

for all stochastic simulations. A large difference between the

impacts of individual ion currents on BVR could be observed, with

the largest contributions by persistent INa and IKr to STV under

these conditions (Figure 2A). Stochastic gating of IKs also had a

substantial impact on BVR, despite its small effect on APD under

basal conditions in isolated myocytes [8,23], consistent with results

by Pueyo et al [17]. In contrast, pumps and exchangers, which

have relatively low individual throughput but high expression

density [24], contributed little to BVR. In general, BVR increased

with increasing CL. When all 13 stochastic components were

included, STV was larger than that obtained with any individual

stochastic formulation, but the results were not additive, indicating

Author Summary

Every heartbeat has an electrical recovery (repolarization)
interval that varies in duration from beat to beat. Excessive
beat-to-beat variability of repolarization duration has been
shown to be a risk marker of potentially fatal heart-rhythm
disorders, but the contributing subcellular mechanisms
remain incompletely understood. Computational models
have greatly enhanced our understanding of several basic
electrophysiological mechanisms. We developed a detailed
computer model of the ventricular myocyte that can
simulate beat-to-beat changes in repolarization duration
by taking into account stochastic changes in the opening
and closing of individual ion channels responsible for all
main ion currents. The model accurately reproduced
experimental data from isolated myocytes under both
physiological and pathological conditions. Using the
model, we identified several mechanisms contributing to
repolarization variability, including stochastic gating of ion
channels, duration and morphology of the repolarization
phase, and intracellular calcium handling, thereby provid-
ing insights into its basis as a proarrhythmic marker. Our
computer model provides a detailed framework to study
the dynamics of cardiac electrophysiology and arrhythmi-
as.

A Computer Model of Repolarization Variability
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that certain stochastic fluctuations cancel each other out. The

stochastic model showed APD and BVR rate dependence similar

to that observed in canine ventricular myocytes (Figure 2B),

indicating that stochastic channel gating (particularly of INa and

IKr channels) is a major contributor to the baseline BVR observed

in physiological conditions.

In addition to a direct impact on Vm fluctuations, individual ion

channels may modulate STV indirectly (e.g., via fluctuations in

intracellular ion concentrations that affect other currents). To

dissect the effect of channel stochasticity versus effects of maximal

conductance on BVR in the fully stochastic model, we employed

the linear-regression method proposed by Sobie ([25,26] and in

Section 3 of Text S1). Although the linear regression is an

approximation of a strongly non-linear system, this approach has

previously been employed to study the contribution of different

ionic currents to various pathophysiological processes [25,26]. We

simulated 200 parameter sets in which the maximal conductance

of each of the currents was scaled based on a Gaussian distribution

with mean 1.0 and standard deviation (Std) 0.3. For each

parameter set, mean APD, STV, and LTV were determined at

steady state during stochastic simulations at 1000-ms CL

(Figure 3). The contribution of each current was determined by

performing a linear regression on the parameter settings (maximal

conductances of individual currents) and output measures

(Figure 3A). Consistent with the results based on the direct

stochastic impact shown in Figure 2, the linear regression analysis

identified major roles for alterations in conductances of INa and IKr

in modulating both APD and STV (Figure 3B). In addition, this

approach also identified a substantial impact of INaK and INaCa on

STV. Because the stochastic gating of these currents did not result

in significant BVR when simulated in an otherwise deterministic

model, it follows that variations in the maximal conductance of

these targets affect STV via other parameters (e.g., APD,

intracellular ion concentrations, etc.), which remains to be

confirmed experimentally.

One potential mechanism through which individual ion

channels may impact BVR is their influence on AP morphology

[27]. To study this, we increased or decreased the amplitude of

IK1, IKur, ITo and/or ICaL to adjust AP morphology without

affecting average APD. The three currents were simulated

deterministically in all cases to prevent any direct effects of the

altered current amplitudes on BVR. This protocol allowed us to

compare the effect of AP morphology on the stochastic gating of

the 9 remaining currents and on BVR in the absence of

confounding changes in average APD. STV was 4.360.6 ms in

the control model with deterministic IK1, IKur, ITo, and ICaL, and

APD was 25265.7 ms (Figure 4A). When IK1 and ITo were

reduced by 70% and 60%, respectively, and IKur was increased by

275%, a triangular AP morphology was obtained with similar

APD (24964.2 ms) but significantly lower STV (2.960.5 ms;

Figure 4B). Interestingly, with a square AP morphology (ICaL and

ITo reduced by 75% and 20%, respectively, IKur and IK1 increased

by 20%), variability was strongly increased (STV = 1161.9 ms;

Figure 4C) compared with control AP morphology. This pattern

suggests that, in addition to APD, AP morphology can strongly

affect BVR, whereby a conspicuous AP plateau is associated with

increased BVR.

Effects of cell-to-cell coupling on BVR
Zaniboni et al. [1] have previously shown that the electrical

coupling of two myocytes reduced their temporal repolarization

variability, which was confirmed in the modeling study by Lemay

et al [16]. When identical cells were coupled in our simulations,

the overall temporal variability (coefficient of variance:

100%6Std(APD)/mean(APD)) in the model was reduced from

2.4% to 1.9%, quantitatively similar to that observed by Zaniboni

et al. in guinea-pig ventricular myocytes (2.361.2% in uncoupled

cells vs. 1.560.6% in cell pairs). We observed a reduction in BVR

of 1.1 ms in cell pairs compared to uncoupled cells when two

identical cells were coupled (Figure 5A). Gap-junction conduc-

tance did not influence BVR over the range of values that would

result in successful propagation in a one-dimensional strand [28].

Interestingly, Zaniboni et al. also reported that there was an

asymmetrical redistribution of APD when a cell with a long APD

was coupled to a cell with short APD, by which the long APD

shortened more than the short APD prolonged. We hypothesized

that this asymmetrical response may also apply to BVR and

prolonged APD in one of the two cells through the injection of a

constant, deterministic current for the duration of the APD

(Figure 5B). BVR was larger in the cell with prolonged APD,

thereby increasing the average BVR. When the two cells were

coupled, spatial APD dispersion was lost. Although BVR remained

larger than that of the symmetrical cell pair, the decrease in

average BVR compared with the uncoupled situation was more

pronounced (1.9 ms; Figure 5A, inset). Moreover, BVR was

further reduced (but not eliminated) when more cells were coupled

together in a one-dimensional strand (Figure 5C), although, as

expected, the spatial dispersion of repolarization increased with

increasing length of the strand. Taken together, these data suggest

that cell-to-cell coupling not only reduces spatial dispersion of

repolarization but may also limit excessive BVR of vulnerable

regions. As such, conditions in which coupling is reduced (e.g., in

ischemia) may lead to increased BVR.

Figure 1. Stochastic channel gating contributes to BVR in a
computational model of the canine ventricular myocyte. A. 5
consecutive APs in a representative canine ventricular midmyocardial
cell, the deterministic computational model, or the model with a
stochastic Markov formulation of IKr (top to bottom) at 1000-ms pacing
CL. APD (ms) is indicated below each beat. B. Poincaré plot of 45
consecutive APDs for the conditions in (A). The white circle in each
panel indicates the steady-state APD of the deterministic model.
doi:10.1371/journal.pcbi.1003202.g001

A Computer Model of Repolarization Variability
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BVR rate dependence
Because of the hyperbolic relationship between the rate of

repolarization and APD, sensitivity to changes in net membrane

current (Im) may be higher in longer APs, thereby contributing to

reverse rate-dependence of APD modulation and, thus, to BVR

[27,29]. This mechanism, of which the physiological relevance is

supported by recent experimental findings [30], has been

identified as ‘‘intrinsic’’ because it reflects a numerical property

independent from channel gating [27]. Nevertheless, the impact of

stochastic channel gating on net membrane current might also be

rate dependent, contributing an additional source of APD

variability, which we will refer to as ‘‘active’’ to differentiate it

from the ‘‘intrinsic’’ component.

We hypothesize that i) both the ‘‘intrinsic’’ and the ‘‘active’’

components may underlie BVR reverse rate-dependence

(Figure 2B) and ii) that individual ionic conductances may

contribute unequally to the ‘‘active’’ component. To address these

hypotheses, membrane potential and net membrane current (Vm

and Im) were recorded for 30 beats during steady-state stimulation

at different cycle lengths. The mean and Std of Im and Vm over

these 30 beats was measured at each time point during the action

potential.

In simulations with the stochastic model, Std(Im) was found to

vary along the action-potential course, reaching a maximum

during phase-3 repolarization (Figure 6A). While such a Std(Im)

profile was present at all CLs, Std(Im) global magnitude increased

at longer CLs (Figure 6A,B). The observation that Std(Im) is rate

dependent confirms the presence of an ‘‘active’’ component in

BVR rate dependence.

According to the ‘‘intrinsic’’ component concept, rate-independent

Std(Im) should still result in rate-dependent BVR [27]. Thus, to

quantify the impact of the intrinsic component on BVR

Figure 2. Contribution of channel density of stochastic ion currents to BVR and its rate dependence. A. STV magnitude induced by
stochastic channel gating of individual currents in an otherwise deterministic model or stochastic channel gating of all 13 currents/fluxes combined
(right-most bars) at CL of 500 ms, 1000 ms, or 2000 ms. Top panel shows 5-fold reduction in channel density (with 5-fold increase in single-channel
conductance), middle panel shows channel density based on estimates from experimental data (Section 2.5 in the Supplemental Information), and
bottom panel shows 5-fold increase in channel density with reduced single-channel conductance. B. Rate dependence of average APD (left), STV
(middle) and LTV (right) in experiments (symbols) and model (lines) with stochastic gating of all 13 targets combined at 100% channel density.
doi:10.1371/journal.pcbi.1003202.g002

A Computer Model of Repolarization Variability
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rate-dependency, BVR was measured at various CLs in the presence

of rate-independent Std(Im). To this aim, a stochastic Gaussian

component was selectively added to the Vm update step of the

deterministic model. The amplitude of the stochastic component

(a= 1.5; Section 2 of Text S1) was chosen such that BVR at

CL = 300 ms matched that of the fully stochastic model. As shown in

Figure 6C, rate dependence of STV was blunted, but not eliminated

by this procedure. The remaining rate dependence of STV (dashed

line) reflects the ‘‘intrinsic’’ component contribution (i.e., even with

the same amount of Im ‘‘noise’’, BVR is larger at longer CLs).

Figure 3. Contribution of currents to BVR determined via linear regression of 200 unique virtual myocytes. A. Relative changes in the
maximal conductance (Gx) of the 13 currents/fluxes (lanes correspond to the column pairs in panel B) for 100 (out of 200) trials (left panel) and
corresponding changes in outputs (APD, STV and LTV) during steady-state pacing at CL = 1000 ms (right panel). Middle panel shows the coefficients
that indicate the contribution of each current to every output measure as determined via linear regression. B. Bar plot of the magnitude of the
coefficients from panel A regarding their impact on APD (white bars) or STV (shaded bars). IKr and INa have a large impact on both APD and BVR,
consistent with the results from Figure 2. In addition, INaK also strongly affects STV. LTV showed similar pattern as STV and is not shown for clarity.
doi:10.1371/journal.pcbi.1003202.g003

A Computer Model of Repolarization Variability
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If affected by the ‘‘intrinsic’’ component only, BVR magnitude
should be independent of diastolic interval (DI) [27]. However, it
was less obvious whether this should apply also to overall BVR, i.e.,
including the ‘‘active’’ component. To answer this question, in the
stochastic model APD was prolonged through injection of a
constant current and the resulting STV vs. APD relationship was
measured at three CLs (Figure 6D). The STV/APD relationships
at the three CLs largely overlapped, indicating that mean APD,
rather than DI, is also the main determinant of the ‘‘active’’
component. To confirm this conclusion, we adapted the pacing
protocol in the simulations such that the virtual cell was paced with
a fixed diastolic interval. To this end, APD was determined online
(i.e., during the simulation), and the next pacing instant was set to
achieve a pre-specified DI. Multiple simulations were performed
with different pre-specified DIs to obtain a curve similar to that for
BVR rate dependence. In fact, when BVR was plotted vs. CL
(determined via CL = mean APD+DI), an identical BVR/CL
relationship was obtained compared to normal pacing (compare
‘‘fixed DI’’ and ‘‘variable DI’’; Figure 6C), confirming that under
these physiological conditions, variations in DI do not contribute to
BVR rate dependence. In contrast, in the chaotic models of Sato et
al. in the setting of EADs, beat-to-beat APD differences occur
because of a steep APD/diastolic interval (DI) relationship [14].

Mechanisms contributing to exaggerated BVR in drug-
induced repolarization prolongation

We previously reported that BVR is increased in pharmaco-

logical models of long-QT syndrome (LQT) type 2 (using the IKr-

blocking drug dofetilide) and LQT3 (increased persistent INa due

to ATXII) and that this BVR could be reduced by b-adrenergic

stimulation (bARS) [8]. The present finding that BVR is most

sensitive to IKr and INa modulation (Figure 2) is consistent with

these observations. In contrast, we found that during IKs inhibition

(using HMR1556), bARS significantly increased BVR, whereas

HMR1556 alone had no effect on BVR [8]. Notably, all these

experimental findings were reproduced by the model

(Figure 7A,B), indicating that it can be employed to study the

factors contributing to exaggerated BVR in pharmacological

representations of LQT1-3.

The contribution of both intrinsic and active mechanisms to

BVR rate dependence (Figure 6) suggests that the increased BVR

observed in pharmacological models of LQT syndrome (Figure 7)

could result directly from APD changes. On the other hand, APD

and BVR changes may be dissociated under these conditions. To

investigate the effect of APD prolongation on BVR, we employed

a deterministic current injection to reduce average APD back to

baseline levels. When APD was reduced, BVR was also reduced to

control values (STV equaled 3.360.5, 7.661.0, and 4.160.6 ms

in control, LQT2, and LQT2 with reduced APD, respectively;

Figure 8A). In contrast, removing the stochastic gating of IKr did

not significantly alter BVR (7.761.1 ms) compared to LQT2

simulations with stochastic IKr gating. These findings suggest that

the increased BVR in the presence of simulated IKr blockade is not

due to increased channel stochasticity, but instead reflects the

intrinsic component of BVR.

When STV was plotted against average APD for individual

canine ventricular myocytes or individual model cells generated

based on a Gaussian distribution of conductances for all 13

currents (similar to the approach for Figure 3A), a non-linear

relationship was obtained, which was fitted by an exponential for

the purpose of parameter quantification. There was no difference

in the APD dependence of STV between experiments and model,

or between control and IKr-block (LQT2) conditions

(Figure 8B,C), although the fit to LQT2 simulation data had a

slightly larger offset (parameter a) and lower R2 due to a few

isolated instances with short APD but very large STV. These data

indicate that the model is able to quantitatively reproduce

Figure 4. Effect of AP morphology on BVR. A. Overlay of 30 APs (top panel) and Poincaré plot of corresponding APDs (bottom panel) for the
control myocyte, without alterations in ion currents, simulated with deterministic ICaL, IK1, IKur, and ITo and stochastic gating of the remaining 9
currents. APs with the shortest and longest duration are shown in black, others in grey. Average APD and STV are indicated below the APs. B. Similar
to panel A for a triangular AP morphology obtained by reducing IK1 and ITo (by 70% and 60%, respectively) and increasing IKur (by 275%). C. Similar to
panels A and B for a square AP morphology obtained by increasing IK1 and IKur (by 20% each) and decreasing ICaL and ITo (by 75% and 20%),
respectively.
doi:10.1371/journal.pcbi.1003202.g004

A Computer Model of Repolarization Variability
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Figure 5. Effect of cell-to-cell coupling on BVR. A. APD (top panel) and STV (bottom panel) of two identical cells for various degrees of electrical
coupling. Normal coupling (left vertical dashed line) and critical coupling for successful conduction in a one-dimensional strand of virtual myocytes
(right vertical dashed line) are indicated. Both cells received external stimulation. B. Similar to panel A for two cells of which one is prolonged via
current injection (20.1 pA/pF). Cell-to-cell coupling causes a mild decrease in average STV (1.1 ms) that is more pronounced in the case of an
asymmetrical cell pair (1.9 ms; inset). C. Effect of strand length on temporal (solid line) and spatial (dashed line) dispersion of repolarization in an
asymmetrical one-dimensional strand. Half of the strand received additional current injection to prolong APD, similar to panel B. BVR decreased with
increasing strand length, whereas spatial dispersion of repolarization increased for longer strands.
doi:10.1371/journal.pcbi.1003202.g005

A Computer Model of Repolarization Variability
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experimental BVR characteristics covering a range of cell-to-cell

differences. Moreover, these data strongly suggest that APD

prolongation is the main determinant for the increased BVR in

LQT2. Qualitatively similar results were obtained for INa

augmentation with ATXII, although the simulated APs were very

prone to EAD formation, preventing accurate STV comparison

with experimental results.

We have recently shown that spontaneous Ca2+ release (SCR)

from the sarcoplasmic reticulum (SR) causes prolongation of the

next APD in a pharmacological model of LQT1 (bARS and IKs

inhibition), contributing to increased BVR if SCR occurs

irregularly [31]. This suggests that BVR is controlled by factors

other than APD alone under these conditions. In agreement, we

found that experimentally recorded BVR values were substantially

larger for LQT1 than for control (Figure 9A, left panel) or LQT2

(not shown) conditions for any given APD. The BVR vs. APD

relationship showed a correspondingly larger value for parameter

‘‘a’’ in LQT1 (Figure 9A, right panel).

In the presence of 100% IKs inhibition, 10% INaK inhibition,

and simulated b-adrenergic stimulation, we observed a brief

period of instability in Ca2+ handling in the deterministic model,

resulting in APD variability even in the absence of stochastic

gating (Figure 9B). Stochastic gating significantly prolonged the

window of Ca2+-handling abnormalities and caused pronounced

APD variability during this period, in agreement with our recent

experimental observations [31]. However, in the single-domain

model, SCRs and the resulting delayed afterdepolarizations

(DADs) had almost identical amplitudes (Figure 9C), resulting

in two clusters of APD values, depending on the timing of the

SCR. If an SCR closely preceded a beat, APD was prolonged

(Figure 9C, bottom panel, second beat), whereas with a longer

delay between the SCR and subsequent AP, APD was compar-

atively short. This resulted in a triangular Poincaré plot, which is

not seen experimentally [8,31].

Since it is well-established that SCR is a highly localized

subcellular process [21], we hypothesized that local fluctuations in

intracellular [Ca2+] could modulate BVR. To study the effect of

subcellular variations in Ca2+ handling, we divided the cell into

four identical domains connected via Ca2+ diffusion. The resulting

model still falls in the category of ‘‘common-pool’’ models and

Figure 6. Role of APD and stochastic gating in BVR reverse rate dependence. A. Magnitude of channel gating stochastics (assessed by
Std(Im) for 50 beats) over time for CL of 350–4000 ms using the fully stochastic model under control conditions. B. Rate dependence of total
magnitude of Im fluctuations (given by area under Std(Im) curve). C. STV rate dependence in the fully stochastic model during fixed-CL pacing (solid
line) or fixed-DI pacing (dash-dotted line), or in the deterministic model during fixed-CL pacing with a CL-independent stochastic term (see Results,
section ‘‘BVR rate dependence’’) added to Im (dashed line). CL-independent stochastic behavior results in a blunted STV rate dependence. D. STV vs.
APD relationship at CLs of 500 ms (dark grey symbols), 1000 ms (white symbols), or 2000 ms (light grey symbols). APD was varied through injection
of a deterministic stimulus current between 20.1 and 0.1 pA/pF for the duration of the AP.
doi:10.1371/journal.pcbi.1003202.g006
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does not reflect the dyadic nanostructure of ‘‘local-control’’

models. Nonetheless, the presence of local Ca2+ domains resulted

in a wider range of SCR amplitudes and, consequently, a wider

distribution of APD values compared with the stochastic model

with a single domain (Figure 9D). These data suggest that

although stochastic gating of Ca2+-handling proteins does not

contribute to baseline BVR, it plays a critical role under conditions

with SR Ca2+ overload. Moreover, we provide a first indication

that local domains may amplify stochastic fluctuations and

contribute to APD variability.

Discussion

In this study, we developed a novel model of the canine ventricular

myocyte electrophysiology including stochastic gating of all major ion

currents and SR Ca2+-handling processes. The model showed rate

dependence of APD and BVR consistent with experimental data from

canine ventricular myocytes. Using this model, we obtained the

following novel insights into the ionic contributors to BVR: i) stochastic

channel gating (mainly of INa and IKr) strongly contributes to baseline

BVR; ii) BVR is more pronounced in cells with a well-developed AP

plateau than in cells with triangular AP morphology; iii) BVR is

reduced by cell-to-cell coupling, particularly in the case when one of

the two cells has an increased BVR; iv) the rate dependence of BVR is

due to ‘‘active components’’ and ‘‘intrinsic components’’, but is

independent of variations in DI; and v) APD prolongation strongly

increases BVR but is not the sole determinant of exaggerated BVR in

drug-induced conditions.

Relation to existing computational models
Despite the experimental evidence of an important role for BVR

as an indicator of proarrhythmic risk [2,32], few computational

Figure 7. BVR in simulated LQT syndrome types 1–3 in the absence or presence of bARS. A. Overlay of 30 consecutive APs in the absence
(2bARS) or presence (+bARS) of b-adrenergic receptor stimulation under control conditions (top-left panel) or simulated LQT1 (top-right panel), LQT2
(bottom-left panel), or LQT3 (bottom-right panel) at 1000-ms CL. Shortest and longest APs are shown in black, intermediate APs in grey. A Poincaré
plot of the 30 APDs is shown below. B. Quantification of BVR in LQT1-3 at CL of 500, 1000, or 2000 ms in the absence or presence of bARS. HMR
indicates simulation of the IKs blocker HMR1556 (simulated LQT1), Dof simulation of the IKr blocking drug dofetilide (LQT2) and ATXII indicates
simulations with enhanced persistent INa (LQT3). bARS reduces BVR significantly in LQT2 and LQT3, but not in LQT1, consistent with experimental
results [8].
doi:10.1371/journal.pcbi.1003202.g007
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Figure 8. Role of APD in the observed increase in BVR under simulated LQT2 conditions. A. Overlay of 30 consecutive APs in the model
using control conditions, simulated LQT2, simulated LQT2 with deterministic IKr, or simulated LQT2 with reduced APD due to injection of a
deterministic stimulus current. Shortest and longest APs are shown in black, intermediate APs in grey. APD, STV, and Poincaré plots are shown below
each overlay. B. STV vs. APD relationship under control conditions (left panel) or LQT2 conditions (right panel) in individual canine ventricular
myocytes (filled symbols) or individual model cells (open symbols; based on whole-cell conductances drawn from a Gaussian distribution, as in
Figure 3A). Data were fit with a monoexponential function (lines). C. Parameters of the monoexponential fits of panel B under control and LQT2
conditions in experiments (grey bars) and model (white bars). The model shows a quantitatively similar STV vs. APD relationship as experiments, and
this relationship is not different between control and LQT2 conditions.
doi:10.1371/journal.pcbi.1003202.g008
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models have incorporated this to date. Wilders and Jongsma were

among the first to examine stochastic channel gating in a

computational cardiac cell model for their investigation of

beating-rate variability in sinoatrial node cells [33]. Subsequently,

Tanskanen et al. employed a local control model of the canine

ventricular myocyte to investigate the role of stochastic gating of

ICaL channels in EAD formation [13]. These authors also provided

a mathematical analysis indicating that increased voltage noise

skewed the distribution of APD towards longer APDs, enhancing

the susceptibility to EADs [34]. In contrast, Sato et al. have shown

that the EADs observed in their model of the H2O2-treated rabbit

ventricular myocyte were chaotic and not due to stochastic

fluctuations. However, stochastic channel gating resulted in an

increased variety of temporal dynamics of the chaotic model [14].

Pueyo et al. also found that stochastic channel gating favored the

occurrence of alternans and EAD generation during IKr blockade

[17]. However, both Sato et al. and Pueyo et al. only considered

stochastic gating of IKs. Lemay et al. adapted the Luo-Rudy

dynamic model of the guinea-pig ventricular myocyte to investigate

the role of stochastic gating and protein turnover of a selected

number of currents on APD variability and intercellular conduction

delays under physiological conditions [16].

The results presented here provide a significant extension of the

previously developed models by considering both stochastic gating

of all major ion currents (except background currents) and Ca2+-

handling processes. Moreover, we show that the stochastic model

is quantitatively consistent with experimental measures of BVR in

isolated canine ventricular myocytes and identify contributors to

BVR in physiological and pathological conditions.

BVR as a proarrhythmic marker
BVR has been proposed as a more reliable proarrhythmic

marker than prolongation of repolarization per se, at least for

specific pathological conditions [2–4]. Our data indicate that

BVR, determined largely by stochastic channel gating during

baseline conditions, is modulated by a number of factors that may

play a role in arrhythmogenesis.

We find that AP morphology (Figure 4) and duration

(Figure 6) affect BVR. In particular, we show that increased

APD and a prolonged AP plateau increase BVR, whereas

triangulation of the AP reduces BVR. As we showed in previous

work [30], non-linearity of the relationship between repolarization

rate and APD is, per se, sufficient to account for a larger impact of

current fluctuations occurring during phases with very slow

repolarization (plateau) on APD. Nevertheless, a prolonged AP

plateau may also increase the likelihood of autoregenerative

reactivation of ‘‘window’’ currents [35], which would boost

current fluctuations. This may ultimately result in EADs, a cause

Figure 9. Mechanisms underlying increased BVR under LQT1 conditions with SR Ca2+ overload. A. STV vs. APD relationship under
control (open symbols) or LQT1 conditions (filled symbols) in individual canine ventricular myocytes (left panel). Right panel shows the parameters of
the non-linear fit of the STV vs. APD relationship under control or LQT1 conditions (solid and dashed lines in left panel, respectively), or under LQT2
conditions (from Figure 8). B. Consecutive APDs (top panel) and Ca2+-transient amplitudes (middle panel) during simulated application of 1.0 mmol/
L isoproterenol (ISO) at a 500-ms CL in the deterministic model. Membrane potential and intracellular [Ca2+] for the beats indicated by the black
vertical boxes are shown in the bottom panel. APD (in ms) is indicated below each beat and a Poincaré plot is shown on the right. Simulations were
performed with 100% IKs inhibition to simulate LQT1 conditions and with 10% inhibition of INaK, resulting in increased [Na+]i and reduced Ca2+

extrusion via INaCa, to promote Ca2+-handling abnormalities. C. Similar to panel B for the stochastic model with a single domain. D. Similar to panel B
for the stochastic model divided into four identical domains connected via Ca2+-diffusion terms with time constant t= 20 ms.
doi:10.1371/journal.pcbi.1003202.g009
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of extreme temporal and spatial variability of repolarization and of

ectopic impulse formation. Both Pueyo et al. [17] and Tanskanen

et al. [13] have shown that stochastic fluctuations in channel

gating (of IKs and ICaL, respectively) can indeed facilitate the

development of EADs (however, see Sato et al. [15]). These data

suggest that BVR reflects the robustness of repolarization and,

when exaggerated, the tendency towards EAD development. It

should be noted that Hondeghem et al. have previously associated

drug-induced AP triangulation with increased instability and

proarrhythmia in the Langendorff-perfused methoxamine-sensi-

tized rabbit heart [36], indicating that other species-dependent

factors such as the ion current profiles and the amplitude of the AP

plateau may influence the effects of AP morphology on BVR.

In addition to EADs induced by reactivation of ICaL during a

prolonged AP plateau, abnormal Ca2+ handling has been shown to

be able to induce EADs and delayed afterdepolarizations [31,37].

As such, the consideration of both stochastic Ca2+ handling and

ion-channel gating in the model presented here is important.

Previous experimental data from our group have shown that

buffering of intracellular Ca2+ (using BAPTA) can suppress BVR

during bARS and IKs blockade in single ventricular myocytes [8].

Furthermore, in a pharmacological LQT2 model in intact rabbit

hearts, abnormal Ca2+ handling also preceded fluctuations in

membrane potential [38]. We found no direct contribution of

individual Ca2+-handling proteins to BVR under baseline condi-

tions (Figure 2). However, alterations in Ca2+ homeostasis can

have a significant impact on BVR and are at least partially

mediated by stochastic gating of SR Ca2+-handling proteins

(Figure 9). Moreover, in the ventricular myocyte, the strong local

positive feedback characteristics of Ca2+-induced Ca2+ release may

amplify stochastic fluctuations within a subsarcolemmal micro-

domain and modulate BVR. Thus, BVR also reflects the stability

of the intracellular Ca2+-handling system and Ca2+-sensitive

currents.

Dispersion of repolarization has been shown to be arrhythmo-

genic in a variety of conditions [39]. Cell-to-cell coupling is able to

suppress both temporal and spatial dispersion of repolarization

(Figure 5), suggesting that BVR can indicate the degree of

(un)coupling of the myocardium.

Combined, these data suggest that BVR reflects both the

intrinsic temporal variability (stochastic channel gating and Ca2+

handling) as well as the sensitivity of the electrical system to these

fluctuations. For example, we have shown that BVR is strongly

modulated by APD, AP morphology, and cell-to-cell coupling.

The integration of APD and these additional parameters may

contribute to the value of BVR as proarrhythmic marker. Our

results highlight an important role for abnormal Ca2+ handling in

BVR, consistent with experimental recordings [31]. Future

experimental and computational studies may elucidate the impact

of Ca2+ on BVR at the subcellular level, providing a more

extensive validation of local Ca2+ release and Ca2+-wave

properties.

Limitations and future directions
Stochastic formulations of all 13 targets were based on the well-

validated characteristics of the deterministic model [18,19] using

the methodology employed in local control models [13,21,22].

This approach allows tracking of single-channel behavior;

however, a formal validation of single-channel characteristics

based on dwell times, open probability distributions, etc. is beyond

the scope of this study. Furthermore, since single-channel

recordings are often performed in non-physiological solutions, it

would be unclear whether any deviations in single-channel

behavior observed in the model under these conditions would

affect the stochastic properties relevant for BVR.

We estimated the effective number of channels in the model

based on experimentally obtained single-channel conductance.

For several targets, the single-channel conductance or expression

density is not well constrained. For example, to the best of our

knowledge, there are no data on IKs single-channel conductance

from native tissue, and experimental data from heterologous

expression systems show considerable variability (section 2.5 of

Text S1). We performed simulations over a range of channel

densities to investigate the impact of this parameter (Figure 2).

Because single-channel conductance has a large impact on BVR

(Figure 2), the contribution of these targets may therefore be

under- or overestimated.

The model presented here falls in the category of ‘‘common-

pool’’ models that do not capture the detailed nanostructure of the

ventricular myocyte where L-type Ca2+ channels on the T-tubular

membrane and ryanodine receptors on the sarcoplasmic reticulum

interact in a local nanodomain (dyad). Although we divided the

model into a number of compartments and showed that this ‘local’

Ca2+ handling can modulate BVR (Figure 9), the present model

cannot reproduce arrhythmogenic Ca2+ waves or other properties

of ‘‘local-control’’ models that incorporate this dyadic structure. In

contrast to experimental recordings [31], Poincaré plots in the

presence of Ca2+-handling abnormalities showed a triangular

pattern in the model, an effect that may be due to the limited

number of domains in the local simulations. A number of ‘‘local-

control’’ models investigating key properties of subcellular Ca2+

handling have recently been described [22,40,41]. Integration of

these ‘‘local-control’’ models and the model presented here could

facilitate the mechanistic analysis of the role of Ca2+-handling

abnormalities in BVR in subsequent studies.

In addition to single-channel gating and Ca2+, other factors may

modulate BVR. These factors include signaling pathways, changes

in cell volume and pH, stretch and electro-mechanical feedback,

etc. and are beyond the scope of the current investigation.

Moreover, most of these factors will change on a timescale of

minutes, whereas BVR reflects the changes in repolarization

duration on the order of seconds. Thus, although these factors can

affect BVR, they are likely to do so via changes in repolarization

duration, Ca2+ handling, or stochastic channel gating that have

been investigated here.

Finally, although the results presented here suggest that BVR

reflects a combination of potentially proarrhythmic signals at the

(sub)cellular level, its role as a marker for arrhythmogenesis can

only be thoroughly investigated in a large multicellular model. The

complexity of the cell model makes this computationally prohib-

itive for the present implementation. An alternative approach to

simulate stochastic channel gating with improved computational

efficiency has recently been proposed [42]. Future studies could

apply this technique to study the role of BVR as a proarrhythmic

marker in large-scale multicellular simulations. Our cell-pair and

one-dimensional-strand simulations show that cell-to-cell coupling

will reduce but not eliminate BVR. Future studies could focus on

the synchronization of variability during arrhythmogenesis in a

multi-scale model.

Conclusions
We present a novel stochastic model of the canine ventricular-

myocyte electrophysiology showing APD and BVR rate depen-

dences consistent with experimental data from isolated canine

ventricular myocytes under physiological conditions and in

pharmacological models of LQT1-3. The model provides new

insights into the (sub)cellular determinants of BVR and suggests
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modulating roles for several processes, including APD, AP

morphology, Ca2+ handling, and cell-to-cell coupling. In addition

to providing an important framework to further our understanding

of the role that BVR can play as a proarrhythmic marker, it also

gives novel insights into the differential roles of ion channels in

arrhythmogenesis.

Methods

A detailed overview of the methods employed can be found in

Text S1. A brief summary of the main aspects is given below.

This investigation conformed with the Guide for the Care and

Use of Laboratory Animals published by the US National

Institutes of Health (NIH Publication No. 85-23, revised 1996).

Animal handling was in accordance with the European Directive

for the Protection of Vertebrate Animals Used for Experimental

and Other Scientific Purposes (86/609/EU).

Our recent model of the canine ventricular-myocyte electro-

physiology with b-adrenergic stimulation [18] formed the basis for

the present study. The model was extended with i) a Markov

model of the IKr including block by dofetilide, based on the work

by Brennan et al. [43]; ii) a Markov model of the INa and its

augmentation by ATXII; and iii) a Markov model of the RyR. For

the 13 major ion currents, ion transporters and Ca2+-handling

proteins, stochastic formulations were developed. For those

proteins for which modification by phosphorylation was included

in the original model [18], stochastic implementations of both the

phosphorylated (P) and non-phosphorylated (NP) populations were

simulated. Stochastic simulations were performed using the state-

vector of the deterministic model at any given cycle length as the

initial state vector. At least 250 stochastic APs were simulated in

each condition to determine APD and BVR characteristics. Cell-

pair experiments were simulated via a finite difference approxi-

mation of the cable equation, as previously described [19]. Both

cells received an external stimulus current to eliminate the effect of

depolarization differences on BVR.

The model was implemented in C (model code available as

Software S1), compiled with MinGW, and simulations were run

on an Intel Core I7 computer with 6 GB of RAM using a piece-

wise constant time-step (0.005 ms during the AP, 0.1 ms

otherwise). Data were stored in binary format with a 0.5 ms

resolution and were analyzed using the mathematical software

Octave. The Mersenne-Twister random number generator was

used for single-channel simulations with numerical approxima-

tions for multinomial distributions as indicated in the Section 2 of

Text S1.

For experimental (‘‘wet’’) studies, transmembrane APs were

recorded at 37uC using high-resistance (30–60 MV) glass microelec-

trodes filled with 3 mol/L KCl in midmyocardial myocytes isolated

from canine left-ventricular tissue, as previously described [8].

APD was quantified at 90% repolarization. BVR was quantified

as short- or long-term variability of APD (STV or LTV) using

the formulas S(|APDi+12APDi|)/[nbeats6!2] or S(|APDi+1+
APDi226APDmean|)/[nbeats6!2], respectively, for 30 consecutive

APs, as previously described [8]. Pooled data are expressed as

mean 6 SD unless otherwise specified.

Supporting Information

Figure S1 Structure and validation of IKr Markov model
properties. A. Model structure. B. Tail I–V relationship in

model and canine ventricular myocytes (reference [2] in Text S1).

C. Time constant of activation based on a single-exponential fit in

model and canine ventricular myocytes (reference [2] in Text S1).

D. Time constant of deactivation in model and canine ventricular

myocytes (reference [2] in Text S1). E. Dose-response curve of IKr

block by dofetilide (experimental data from rabbit ventricular

myocytes; reference [4] in Text S1). F. Use-dependent block of IKr

by dofetilide in AT-1 cells (reference [3] in Text S1) and model. G.
Vm dependence of dofetilide concentration required for half-

maximal IKr inhibition (relative to 230 mV) in model and AT-1

cells (reference [3] in Text S1).

(TIF)

Figure S2 Structure and validation of INa Markov model
properties. A. Model schematic of fast and late (persistent) INa

components. B. Peak I–V relationship (left panel) and steady-state

inactivation (right panel) in model (lines) and canine ventricular

myocytes (symbols) at baseline or in the presence of b-adrenergic

stimulation.

(TIF)

Software S1 Implementation of stochastic model in C.

(ZIP)

Table S1 Number of channels/transporters simulated
in the stochastic model.

(DOC)

Text S1 Supplemental methods. Model definition and

methodology for stochastic simulations.

(PDF)
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