3,023 research outputs found

    Model selection in ecology and evolution

    Full text link

    ICMP Covert Channel Resiliency

    Get PDF
    The ICMP protocol has been widely used and accepted as a covert channel. While the ICMP protocol is very simple to use, modern security approaches such as firewalls, deep-packet inspection and intrusion detection systems threaten the use of ICMP for a reliable means for a covert channel. This study explores the modern usefulness of ICMP with typical security measures in place. Existing ICMP covert channel solutions are examined for compliance with standard RFCs and resiliency with modern security approaches

    Energy compensation and received echo level dynamics in constant-frequency bats during active target approaches

    Get PDF
    This work was supported by the Semper Arden Carlsberg grant to P.T.M., by a National Science Foundation grant [1658620] to R.M. and by a National Natural Science Foundation of China [11574183] to R.M.Bats have been reported to adjust the energy of their outgoing vocalizations to target range (R) in a logarithmic fashion close to 20log10R which has been interpreted as providing one-way compensation for increasing echo levels during target approaches. However, it remains unknown how species using high-frequency calls, which are strongly affected by absorption, adjust their vocal outputs during approaches to point targets. We hypothesized that such species should compensate less than the 20log10R model predicts at longer distances and more at shorter distances as a consequence of the significant influence of absorption at longer ranges. Using a microphone array and an acoustic recording tag, we show that the output adjustments of two Hipposideros pratti and one Hipposideros armiger do not decrease logarithmically during approaches to different-sized targets. Consequently, received echo levels increase dramatically early in the approach phase with near-constant output levels, but level off late in the approach phase as a result of substantial output reductions. To improve echo-to-noise ratio, we suggest that bats using higher frequency vocalizations compensate less at longer ranges, where they are strongly affected by absorption. Close to the target, they decrease their output levels dramatically to mitigate reception of very high echo levels. This strategy maintains received echo levels between 6 and 40 dB re. 20 µPa2 s across different target sizes. The bats partially compensated for target size, but not in a one-to-one dB fashion, showing that these bats do not seek to stabilize perceived echo levels, but may instead use them to gauge target size.Publisher PDFPeer reviewe

    Single-click beam patterns suggest dynamic changes to the field of view of echolocating Atlantic Spotted Dolphins (Stenella frontalis) in the wild

    Get PDF
    The study was funded by frame grants from the Danish Natural Science Foundation to P.T.M. and M.W., and by the National Oceanographic Partnership Programme via a research agreement between La Laguna University (N.A.d.S.) and the Woods Hole Oceanographic Institution (M.J.). F.H.J. was supported by the Danish Council for Independent Research | Natural Sciences, and is currently funded by a postdoctoral fellowship from the Carlsberg FoundationEcholocating animals exercise an extensive control over the spectral and temporal properties of their biosonar signals to facilitate perception of their actively generated auditory scene when homing in on prey. The intensity and directionality of the biosonar beam defines the field of view of echolocating animals by affecting the acoustic detection range and angular coverage. However, the spatial relationship between an echolocating predator and its prey changes rapidly, resulting in different biosonar requirements throughout prey pursuit and capture. Here, we measured single-click beam patterns using a parametric fit procedure to test whether free-ranging Atlantic spotted dolphins (Stenella frontalis) modify their biosonar beam width. We recorded echolocation clicks using a linear array of receivers and estimated the beam width of individual clicks using a parametric spectral fit, cross-validated with well-established composite beam pattern estimates. The dolphins apparently increased the biosonar beam width, to a large degree without changing the signal frequency, when they approached the recording array. This is comparable to bats that also expand their field of view during prey capture, but achieve this by decreasing biosonar frequency. This behaviour may serve to decrease the risk that rapid escape movements of prey take them outside the biosonar beam of the predator. It is likely that shared sensory requirements have resulted in bats and toothed whales expanding their acoustic field of view at close range to increase the likelihood of successfully acquiring prey using echolocation, representing a case of convergent evolution of echolocation behaviour between these two taxa.PostprintPeer reviewe

    DNA-Based Identification and Chemical Characteristics of <i>Hypnea musciformis </i>from Coastal Sites in Ghana

    Get PDF
    This work reveals new, important insights about the influence of broad spatial variations on the phylogenetic relationship and chemical characteristics of Ghanaian Hypnea musciformis—a carrageenan-containing red seaweed. DNA barcoding techniques alleviate the difficulty for accurate morphological identification. COI barcode sequences of the Ghanaian H. musciformis showed &lt;0.7% intraspecies divergence, indicating no distinct phylogenetic variation, suggesting that they actually belong to the same species. Thus, the spatial distribution of the sampling sites along the coast of Ghana did not influence the phylogenetic characteristics of H. musciformis in the region. The data also showed that the Ghanaian Hypnea sp. examined in this work should be regarded as the same species as the H. musciformis collected in Brazilian Sao Paulo (KP725276) with only 0.8%–1.3% intraspecies divergence. However, the comparison of COI sequences of Ghanaian H. musciformis with the available COI sequence of H. musciformis from other countries showed intraspecies divergences of 0%–6.9% indicating that the COI sequences for H. musciformis in the GenBank may include different subspecies. Although samples did not differ phylogenetically, the chemical characteristics of the H. musciformis differed significantly between different sampling locations in Ghana. The levels of the monosaccharides, notably galactose (20%–30% dw) and glucose (10%–18% dw), as well as the seawater inorganic salt concentration (21–32 mg/L) and ash content (19%–33% dw), varied between H. musciformis collected at different coastal locations in Ghana. The current work demonstrated that DNA-based identification allowed a detailed understanding of H. musciformis phylogenetic characteristics and revealed that chemical compositional differences of H. musciformis occur along the Ghanaian coast which are not coupled with genetic variations among those samples

    Enhanced Endothelin-1 Mediated Vasoconstriction of the Ophthalmic Artery May Exacerbate Retinal Damage after Transient Global Cerebral Ischemia in Rat

    Get PDF
    Cerebral vasculature is often the target of stroke studies. However, the vasculature supplying the eye might also be affected by ischemia. The aim of the present study was to investigate if the transient global cerebral ischemia (GCI) enhances vascular effect of endothelin-1 (ET-1) and 5-hydroxytryptamine/serotonin (5-HT) on the ophthalmic artery in rats, leading to delayed retinal damage. This was preformed using myography on the ophthalmic artery, coupled with immunohistochemistry and electroretinogram (ERG) to assess the ischemic consequences on the retina. Results showed a significant increase of ET-1 mediated vasoconstriction at 48 hours post ischemia. The retina did not exhibit any morphological changes throughout the study. However, we found an increase of GFAP and vimentin expression at 72 hours and 7 days after ischemia, indicating Müller cell mediated gliosis. ERG revealed significantly decreased function at 72 hours, but recovered almost completely after 7 days. In conclusion, we propose that the increased contractile response via ET-1 receptors in the ophthalmic artery after 48 hours may elicit negative retinal consequences due to a second ischemic period. This may exacerbate retinal damage after ischemia as illustrated by the decreased retinal function and Müller cell activation. The ophthalmic artery and ET-1 mediated vasoconstriction may be a valid and novel therapeutic target after longer periods of ischemic insults

    Hunting bats adjust their echolocation to receive weak prey echoes for clutter reduction

    Get PDF
    This study was funded by the Carlsberg Semper Ardens grant to P.T.M. and by the Emmy Noether program of the Deutsche Forschungsgemeinschaft (DFG; German Research Foundation, grant no. 241711556) to H.R.G. All experiments were carried out under the following licenses: 721/12.06.2017, 180/07.08.2018, and 795/17.05.2019.How animals extract information from their surroundings to guide motor patterns is central to their survival. Here, we use echo-recording tags to show how wild hunting bats adjust their sensory strategies to their prey and natural environment. When searching, bats maximize the chances of detecting small prey by using large sensory volumes. During prey pursuit, they trade spatial for temporal information by reducing sensory volumes while increasing update rate and redundancy of their sensory scenes. These adjustments lead to very weak prey echoes that bats protect from interference by segregating prey sensory streams from the background using a combination of fast-acting sensory and motor strategies. Counterintuitively, these weak sensory scenes allow bats to be efficient hunters close to background clutter broadening the niches available to hunt for insects.Publisher PDFPeer reviewe
    • …
    corecore