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Ocean acidification is a growing environmental problem, and there is a need to investigate

how the decreasing pH will affect marine organisms. Here we studied the effects of

lowered pH on the growth and development of the threespine stickleback (Gasterosteus

aculeatus) eggs. Adult fish, collected from the natural environment, were allowed to

mate in aquaria and the newly produced eggs were incubated in an experiment. Eggs

and larvae from ambient conditions (produced in the laboratory) were reared at three

different pH concentrations (control: pH 7.8; and reduced pH treatments: pH 7.5 and

7.0) for 21 days in the laboratory. Dissolved oxygen concentration (8.1 ± 0.1mg l−1) and

temperature (18.6 ± 0.02◦C) were monitored regularly. Then, egg diameter, larval length,

weight and survival were measured. There was no relationship between egg diameter

and pH or oxygen, but a negative relationship was found with temperature. Survival of

larvae was not affected by pH or temperature, whereas dissolved oxygen concentration

had a positive effect on number of survivors. The pH did not have a significant effect on

the final larval length on day 21, but interacted significantly with dissolved oxygen. Higher

temperatures were found to have a positive effect on the final larval length and weight.

Larval weight, on the other hand, was not related to pH nor oxygen. Coastal zones are

characterized by pH levels that fluctuate due to natural processes, such as upwelling and

river runoff. Our results suggest that the threespine stickleback larvae are well adapted

to the different pHs tested, and egg development will likely not be affected by decreasing

pH, but even slight temperature and oxygen changes can have a great impact on the

threespine stickleback development.
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INTRODUCTION

Since the onset of the industrial revolution, burning of fossil fuels and change in land use have led
to the doubling of atmospheric carbon dioxide levels, presently at∼400 ppm (Blunden and Arndt,
2017), and an average warming of nearly 1◦C. In seawater, atmospheric carbon dioxide dissolves
and causes a decrease in the pH, a phenomenon referred to as ocean acidification. For more than
a century, the pH of ocean surface waters has decreased and a doubling in acidity is expected by
year 2100 (Feely et al., 2009). The current ocean acidification and change in the equilibrium of
the seawater chemistry are so rapid that they will most likely lead to major changes in marine
ecosystems and impact marine life (Pelejero et al., 2010). For more than a decade, the biological
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responses of phytoplankton (Lohbeck et al., 2012), foraminifera
(Bijma et al., 2002), pteropods (Bednaršek et al., 2017), bivalves
(Jansson et al., 2013), crustaceans (Vehmaa et al., 2013) and
fish (reviewed by Clements and Hunt, 2015; Esbaugh, 2017)
have been studied under different ocean acidification scenarios.
Research suggests that mobile species, such as crustaceans and
fish are less sensitive to acidification than sessile species, possibly
due to their high metabolic rates and active regulation of internal
pH (reviewed by Kroeker et al., 2013). Some fish seem well
adapted to low pH (Maneja et al., 2014; Sundin et al., 2017).
Other fish appear to experience negative effects on life history,
behavior, fitness and performance. For example, fundamental
processes can react negatively to low pH, such as changes in
auditory or olfactory function (Simpson et al., 2011), growth and
survival (Baumann et al., 2012), behavior (Jutfelt et al., 2013;
Schmidt et al., 2017), otolith calcification (Checkley et al., 2009),
as well as tissue and organ structure (Frommel et al., 2012,
2016).

While ocean acidification will affect ecosystems on a global
level, the impact on coastal areas is more complex. Various
processes, such as acidic inputs from land and freshwater,
eutrophication, and low buffering capacity of brackish waters can
influence the pH (Dickinson et al., 2013). Furthermore, CO2 is
more soluble in cold water (Fabry et al., 2008) making regions
at higher latitudes, including the Baltic Sea, more susceptible to
ocean acidification (Havenhand, 2012). In the Baltic Sea, a large
seasonal and inter-annual variability in the carbon dioxide system
is observed due to primary production, air-sea gas exchange and
mixing (Almén et al., 2017 and references therein). The Baltic
Sea is currently considered very sensitive to climate change,
and is forecasted to be more severely impacted by a changing
climate than other seas, due to basin-specific low alkalinity, heavy
eutrophication, low biodiversity and low salinity (Jutterström
et al., 2014).

The threespine stickleback Gasterosteus aculeatus (L. 1758) is
a common model organism in both evolutionary and ecological
research (Schluter and McPhail, 1992), and tested protocols
for laboratory rearing of this fish are well-established (Des
Roches et al., 2013). The threespine stickleback population has
increased in the Baltic Sea, which is suggested as a consequence
of overfishing of their predators (Bergström et al., 2015). The
stickleback is found in a wide range of habitats, showing
high tolerance to changes in water chemistry and temperature
(Östlund-Nilsson et al., 2006). The species is also euryhaline, and
inhabits both freshwater, brackish and marine areas (Defaveri
et al., 2012). Although the stickleback thrives in different
environments and is tolerant to a wide range of pH, the larval
stagemay bemore sensitive than adults to environmental change,
as is the case for a number of other species (Pankhurst and
Munday, 2011; Crespel et al., 2017; Lonthair et al., 2017 and
references therein).

The aim of this work was to assess the development of eggs
and larvae of the threespine stickleback at different pH levels.
Those pH levels were selected based on the ambient pH (7.8) and
the intensive emission scenario of the RCP 8.5 scenario for the
year 2100 (1pH ∼−0.3, IPCC, 2013) and an extreme scenario
(1pH ∼−0.7). We hypothesized that eggs and larvae are not

affected by lowered pH levels. Eggs and larvae were reared across
a range of three different pH conditions. The effects of low pH
on egg diameter, larval length and survival of G. aculeatus were
investigated during a 3-week experiment.

MATERIALS AND METHODS

Fish Collection
Adult threespine sticklebacks were collected with seine nets
during the breeding season in May 2014 from Tvärminne
archipelago (Brännskär, Långskär, Vindskär Islands) at the
entrance to the Gulf of Finland, Baltic Sea. They were stored in
40 l coolers with ambient water for transport to the laboratory,
where they were separated by sex into holding aquaria (50 ×

60 × 32 cm; 96 l) with oxygenation combined with continuous
seawater exchange, attached to heaters, set at 18◦C. The fish
were kept no longer than 4 weeks, and were fed with frozen
chironomids twice daily, and occasionally with mysid shrimps
collected in local waters. The average surface temperature (0–
3m) was 9.88 ± 0.4◦C (mean ± S.E.), average surface salinity
(0–3m) was 5.87 ± 0.02 (mean ± S.E.), and average pH (0 and
5m) was 8.11 (min and max: 8.01, 8.28) of the study area in
May and June 2014 (monitoring data of Tvärminne Zoological
Station). The study (i.e., 0-class experiment) was performed in
accordance with the current Finnish legislation of animal welfare,
andmeets the terms of the Animal Care Committee at the County
Board.

Mating Procedure
The mating of the fish (sex ratio 1:1) was performed according
to the protocol in Candolin et al. (2008). Mating aquaria (33
× 21 × 15 cm; 10 l) were connected to a seawater flow-through
system (ambient daylight: 17 h light: 07 h dark; salinity: 5.1; water
temperature: 18◦C, pH 7.8), and assembled with clean sand, a
plastic plant as shelter, and green algae Cladophora glomerata for
nest building. Once the males exhibited readiness for breeding
by changing colors, they were individually placed in a mating
aquarium for 1 week to build their nest. A mature female was
haphazardly chosen, introduced to the aquarium and allowed to
spawn with the male. If the female did not spawn within the
two first hours, a new female was presented to the male. The
mating procedure was repeated with 20 couples. The fertilized
eggmasses were allowed to harden for 2 h, removed from the nest
and transferred to the laboratory. The clutch sizes and the total
weights of egg clutches (Table 1) were monitored using a cold
light microscope and a Mettler Ae100 Scale (precision 0.01 g).
The parents were weighed (wet weight) on aMettler Toledo Scale
(precision 0.001 g) and their length measured with graph paper
(Table 1).

Seawater Manipulation
Seawater was filtered through a 10µm filter, and subsequently
added to three tanks of 126 l (70 × 45 × 40 cm), one for
each pH level. The ambient pH (7.8) was used as control, and
two treatments of reduced pH were used: pH 7.5 and 7.0. The
controls and treatments were oxygenated continuously using an
air pump. In addition, the two reduced pH levels were achieved
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TABLE 1 | Background information on parents’ sticklebacks Gasterosteus aculeatus and their clutches used in this study.

M length (cm) M weight (g) F length (cm) F weight (g) Clutch Size (eggs female−1) Clutch weight (g)

Mean ± S.E. 5.61 ± 0.13 1.80 ± 0.12 6.37 ± 0.20 2.45 ± 0.21 169.4 ± 10.00 0.57 ± 0.07

n 17* 17* 18 18 18 16*

Min 4.79 1.32 4.48 1.45 112 0.34

Max 6.8 2.98 7.61 5.12 302 1.35

M, male; F, female. (*1 or 2 values were not measured and are not reported here).

by adding CO2 (gas bottle, 99.7%) through non-silicone tubing
and diffusers to the bottom of the tanks. This provided rapid
CO2 mixing and efficient water circulation. The amount of CO2

added to the tanks was regulated by magnetic valves using a
feedback mechanism, which was connected to a Sera Precision
Controller (see below). The pH levels were monitored with a
Sera Precision Controller (NBS scale, precision 0.1, calibrated
daily using buffer solutions 4 and 7). All calibration buffers used
met the criteria of NIST (US National Institute of Standards
and Technology; also referred to as NBS, National Bureau of
Standards).

The controls and pH manipulated waters were added to 3.6 l
plastic aquaria (no flow-through, 2⁄3 of volume changed daily),
while keeping pH, water temperature, and dissolved oxygen (DO)
concentration as constant as possible (Table 2). However, there
was slight variation in pH, temperature and DO, due to variation
in room temperature and DO consumption (larval respiration),
and these variables were recorded in each aquarium twice per
day. The pH was measured with a hand-held laboratory glass
pH meter (VWR pH10, accuracy 0.1, resolution 0.01), calibrated
daily with pH 4 and 7 buffer solutions. DO and temperature
were measured using YSI ProDSS Sensor (Oxygen resolution
0.1, accuracy 0.1mg l−1; temperature resolution 0.1◦C, accuracy
0.2◦C). Samples for total dissolved inorganic carbon (DIC)
were collected in triplicate from the header tanks(treatments
and control) on day 10 and at the end (day 21) of the
experiment. Samples were stored dark in glass vials without
airspace on ice in +3◦C, until measured within 12 h, using the
acidification/gas stripping/infrared detection method (Salonen,
1981). The carbonate chemistry parameters including pCO2 and
Total alkalinity (TA) were calculated in CO2SYS (V2.1, Pierrot
et al., 2006) based on measured DIC, pHNBS, temperature and
salinity using the dissociation constants K1 and K2 from Roy
et al. (1993), Dickson (1990) for KHSO4 and Lee et al. (2010) for
the total Boron. The NBS scale was applied as the pH scale. pH
values reported in the manuscript may contain a systematic error
in the absolute pH values (cf., Dickson, 2010), as no additional
calibration was performed.

Experimental Set-Up
Eggs were carefully separated using forceps and disposable plastic
pipettes. This procedure has no significant effect on egg survival
(Kraak et al., 1997; Candolin, 2000).

Eggs produced during the mating procedure by one mother
in ambient conditions (∼3 h since laying) were put into three
treatments (20 eggs aquarium−1); the remaining eggs were

TABLE 2 | Mean (± S.E.) temperature, salinity and oxygen over the course of

experiments with stickleback (G. aculeatus) eggs and larvae.

Treatment Temperature (◦C) Salinity O2 (mg l−1)

1: Control 7.8 18.64 ± 0.04 5.1 8.21 ± 0.16

2: 7.5 18.58 ± 0.04 5.1 8.17 ± 0.17

3: 7.0 18.60 ± 0.04 5.1 8.03 ± 0.19

discarded (Figure 1). The same procedure was repeated with
20 different couples. The eggs were checked twice daily during
the manipulations; any dead eggs were recorded and removed
instantly. Once the eggs hatched and the larval yolk sacs
diminished, larvae were fed with liquid food (JBL Nobil Fluid
Artemia). When larvae were ∼7 days old, we switched to
powdered food (JBL Novo Tom Artemia). Food was added twice
a day and always ad libitum. To prevent egg mortality, aquarium
fungicide (Tetra Medica, FungiStop) was added each time new
water was prepared (twice daily) at a concentration of 0.1ml l−1

seawater (Socha et al., 2012).
The lids for the aquaria were kept loosely on to minimize

outgassing between the water and the atmosphere. The eggs and
larvae were photographed using a microscope camera (Nikon
DS-L3 Leica MZ 12 with a cold light microscope). Egg diameter
and the total length of larvae were measured. A random subset
of 5 individuals (eggs before hatching, and larvae after hatching)
from each aquarium were measured in petri dishes on days 0, 3,
6, and 10, and afterwards returned to their respective aquarium.
Day 0 refers to the day when eggs were put to the aquarium
to hatch. On day 21, the length of each remaining larva was
measured and their total wet weight was measured for each
aquarium. The experiment was set up using 20 replicates per
treatment, but two families (including control and treatments)
were removed due to fungal infection (N = 18) (see Table 1 for
details).

Statistical Analyses
A one-way analysis of variance (ANOVA) following a post-hoc
Tukey test were used to compare the three treatments consisting
of a low (7.0), an intermediate (7.5) and ambient (7.8) pH
level (the control). The same analysis was used for comparing
oxygen and temperature between treatments. Although we
tried to keep temperature and DO as constant as possible,
there was some variation and we included these variables (in
addition to pH) in a general linear model (GLM) to analyze egg
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FIGURE 1 | Experimental set-up. After spawning, eggs of Gasterosteus aculeatus were distributed into three different aquaria and exposed to ambient pH (Treatment

1, i.e., control), intermediate pH (Treatment 2), and low pH (Treatment 3). The experiment started when eggs were placed gently into the aquarium (t0) and were

terminated after 3 weeks (t21). The procedure was repeated 20 times with eggs from 20 couples (18 were analyzed; see Methods).

diameter (day 3), larval length and larval weight on day 21. The
assumptions of normality and homogeneity of variances were
checked before analysis. Environmental factors (temperature,
oxygen) were considered as co-variates and the treatment (pH)
as a fixed variable. A general linear mixed model (GLMM)
with binomial distribution was used for survival data (1 =

survived, 0 = dead) in relation to the environment (average pH,
O2, temperature). The pH concentrations were transformed to
hydrogen ions before calculating means. All data were analyzed
using SPSS 21.0.

RESULTS

Experimental Conditions
The pH levels measured (7.00, 7.46, and 7.73) varied significantly
between treatments [F(2, 1,077) = 9,327.3, p < 0.001] and a

post-hoc Tukey test showed that the three treatments differed
significantly from each other (p < 0.001). Differences were also
found for O2 between treatments 1 and 3, and treatments 2 and
3 [F(2, 1,077) = 13.941, p < 0.001]. The temperatures measured
varied significantly between treatments [F(2, 1,077) = 9.538, p <

0.001] and these differences were observed between treatment 1
and 2 (p < 0.001), and 1 and 3 (p= 0.02).

The carbonate chemistry parameters including pCO2 and
TA, calculated from measured pH and DIC are summarized in
Table 3.

Egg Diameter
The diameter of the stickleback eggs ranged between 1.33
and 2.16mm (1.75 ± 0.01mm, mean ± Standard Error, S.E.).
Egg diameter was analyzed on day 3 to study the effects
of environmental variables. No significant relationships were

Frontiers in Marine Science | www.frontiersin.org 4 December 2017 | Volume 4 | Article 427

https://www.frontiersin.org/journals/marine-science
https://www.frontiersin.org
https://www.frontiersin.org/journals/marine-science#articles


Glippa et al. Stickleback Larvae and pH

TABLE 3 | Mean pCO2, Dissolved Inorganic Carbon (DIC)* and Total Alkalinity (TA)

per treatment.

Treatment pHNBS

(min-max)

pCO2

(µatm)

DIC

(µmol kgSW−1)

TA

(µmol kgSW−1)

1: Control 7.8 7.73 (7.58–7.88) 1,301.62 ± 49.75 1,640.87 ± 62.72 1,612.53 ± 61.52

2: 7.5 7.46 (7.34–7.60) 2,441.17 ± 74.86 1,689.04 ± 51.79 1,604.89 ± 49.17

3: 7.0 7.00 (6.90–7.11) 7,298.45± 23.35 1,931.72 ± 6.18 1,647.44 ± 5.27

Values as mean ± S.E. pHNBS is presented as mean over the span of the experiment with

minimal and maximal values.
*No DIC measurement error estimation is available for the presented set of DIC data.

observed between egg diameter and the pH level, nor the
dissolved oxygen concentration, whereas the water temperature
had a significant negative effect on egg diameter [GLM, F(1, 417)
= 4.140, t =−2.035, p= 0.043].

Egg and Larval Survival
Survival (from 20 eggs added to each aquarium at start) was
high throughout the experiment and varied between 17.1 ± 0.6
(ambient, mean ± S.E.), 16.6 ± 0.5 (intermediate pH) and 17.1
± 0.7 (low pH) surviving individuals during the final day of
the experiment (Figure 2). Egg and larval binomial survival were
analyzed in relation to environmental conditions in the aquaria;
mean pH and mean temperature did not have a significant
effect on survivorship of the fish in the different treatments on
the final day of the experiment [Binomial GLMM, F(1, 1,076) =
0.19, p = 0.665, pH; F(1, 1,076) = 2.76, p = 0.097, temperature],
whereas average dissolved oxygen concentration affected survival
significantly positively [F(1, 1,076) = 5.76, p= 0.017].

Larval Length and Weight
The final larval length on day 21 was 9.03 ± 0.04mm, 9.05
± 0.04mm, 9.08 ± 0.05mm (mean ± S.E.), respectively in
treatment 1, 2 and 3 (Figure 3, Supplementary Material). Mean
dissolved oxygen concentration showed an interaction with
treatment, i.e., pH [F(2, 904) = 3.454, p = 0.032] on larval
length and with temperature [F(1, 904) = 47.612, p < 0.001]. The
treatment pH [F(2, 41) = 0.542, p = 0.585] and oxygen [F(1, 41) =
0.668, p = 0.418] were not significant predictors of the final total
wet weight of larvae on day 21 whereas the temperature [F(1, 41)
= 5.989, p= 0.018] had an effect.

DISCUSSION

Although juvenile and adult fish are considered tolerant to future
changes in carbonate chemistry (Fabry et al., 2008; Ishimatsu
et al., 2008; Maneja et al., 2014; Sundin et al., 2017), the
early stages can be more vulnerable to elevated pCO2, because
their acid-base competency is still developing (Murray et al.,
2016; Crespel et al., 2017 and references therein). Recently,
Esbaugh (2017) reviewed the observed effects of elevated CO2

on early life stage survival in a variety of marine teleost
species. The responses ranged from high (Baumann et al.,
2012) to low mortality (Lonthair et al., 2017), or even no
observed changes in high CO2 conditions (Frommel et al.,
2013).

Until recently, little was known about the threespine
stickleback responses to low pH. Schade et al. (2014)
investigated transgenerational effects on the life history of
juvenile sticklebacks by acclimating parents and offspring
to different CO2 levels (∼400 and ∼1,000µatm). They
detected positive effects of low pH on both larval growth
and survival. Moreover, breeding pairs of this species held
at elevated levels of CO2 (1,000µatm) produced more eggs
than control fish. The authors demonstrated that parental
acclimation to elevated CO2 concentrations can modify
these effects without improving offspring fitness. Sundin
et al. (2017) looked in to the reproductive behavior of
the stickleback under ambient conditions (400µatm) and
future levels of CO2 (1,000µatm). They found no effect of
elevated carbon dioxide on the reproductive behavior of this
species and the numbers of offspring produced remained
unchanged.

In the present study, we did not find differences in total
survival of eggs and larvae incubated under different pH
environments (from ambient 7.8 to low pH 7.0). In addition, the
final larval length was not affected by pH conditions, whereas
a temperature increase of 1◦C had a significant positive effect.
The larvae grew normally and their body sizes correspond
to reported values (Lehtiniemi, 2005). The increase of larval
growth with one-degree rise in temperature is to be expected,
as the optimal growth temperature for the species is 21.7◦C
(Lefébure et al., 2011). The threespine stickleback is, however,
flexible concerning temperature, and is able to grow between
3.6 and 30.7◦C (Lefébure et al., 2011), and future warming
might not necessarily cause any serious problems for this
species.

The dissolved oxygen concentration (cf. Table 2), interacting
with treatment pH, showed a significant effect on final
larval length; O2 probably fluctuated due to food addition
and larval respiration. This result was expected as dissolved
oxygen and pH correlate strongly in nature (Jansson et al.,
2015). Some studies suggest that species residing in shallow
waters are more resilient to CO2 changes, as the coastal
environment is subject to large variability (Waldbusser and
Salisbury, 2014). As an example, Lonthair et al. (2017)
were interested in the tolerance of early life stages of the
red drum (Sciaenops ocellatus) to elevated pCO2 (1,000 and
3,000µatm) as this estuarine species experiences large natural
fluctuations of pCO2 on a variety of time scales. They
observed tolerance to elevated pCO2 on a number of different
levels (i.e., survival, growth, yolk consumption, heart rate and
scototaxis).

Ishimatsu et al. (2008) stated that littoral fish, in general,
can compensate their acid-base balance, especially when exposed
to mild hypercapnia. Munday et al. (2011) demonstrated that
juveniles of the damselfishAcanthochromis polyacanthus (Bleeker
1855), a commonly occurring coral reef species, have no clear
response to reduction in pH, possibly due to habitat use.
The juveniles reside in caves with high night-time fluctuations
in CO2; the young experience natural fluctuation in pH as
photosynthesis is increasing during the day and respiration
during the night in the reef matrix. Melzner et al. (2011) showed
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FIGURE 2 | Relation between the larval survival (at day 21) of Gasterosteus aculeatus and treatment (A; 1: ambient, 2: intermediate pH and 3: low pH), oxygen

concentration (B) or the temperature (C).

FIGURE 3 | Relation between the final larval length (at day 21) of Gasterosteus aculeatus and treatment (A; 1: ambient, 2: intermediate pH and 3: low pH), oxygen

concentration (B) or temperature (C).

that hypercapnia increases during food limitation, suggesting
that some responses measured in laboratory experiments during
CO2 stress can be masked if fish are fed ad libitum (Esbaugh,
2017), as is the case in the present work.

The threespine stickleback in the current study area resides in
a fluctuating habitat consisting of small lagoons with green algal
mats, where pH is high during the day and lower during night.
Ahlnäs (2015) measured pH at different depths in the Tvärminne
archipelago, showing large variation (7.17–8.59) between sites,
months and times of day, at sites all being close to the shore
and potential stickleback habitats. In Jansson et al. (2015), pH
variability in the field was even larger in the same area, fluctuating
between 6.91 and 8.23. The on-going eutrophication in the
Baltic Sea is estimated to increase seasonal variability of coastal
pH even further in the future: increasing CO2 concentrations
decrease pH in particular during low productive winter months,
and increasing primary production (caused by eutrophication)
converts CO2 to organic carbon, and causes elevation of the
pH during the summer months (cf. Jutterström et al., 2014;
Waldbusser and Salisbury, 2014). McNeil and Sasse (2016)
pointed out that coastal marine environments experience large
CO2 fluctuations, and many organisms living in these areas
have naturally evolved resilience to CO2 changes. Even though

we did not study the effect of changes in pH that sticklebacks
can experience on a daily base, our results show that the
threespine stickleback seems tolerant to shifts up to−0.7 units in
average pH. Future studies should investigate combined effects
of ocean acidification and warming on the thermal tolerance of
the threespine stickleback, as the optimal thermal window may
decrease in lowered pH (Pörtner, 2008). It is also important
to study behavioral disturbances (Nilsson et al., 2012), as the
potential to acclimate to CO2 is minimal in some fish (Welch
et al., 2014).
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