7,017 research outputs found

    Sociology of Confinement: Assimilation and the Prison Rat

    Get PDF

    Sociology of Confinement: Assimilation and the Prison Rat

    Get PDF

    The Parole Supervisor in the Role of Stranger

    Full text link

    DataGauge: A Practical Process for Systematically Designing and Implementing Quality Assessments of Repurposed Clinical Data

    Get PDF
    The well-known hazards of repurposing data make Data Quality (DQ) assessment a vital step towards ensuring valid results regardless of analytical methods. However, there is no systematic process to implement DQ assessments for secondary uses of clinical data. This paper presents DataGauge, a systematic process for designing and implementing DQ assessments to evaluate repurposed data for a specific secondary use. DataGauge is composed of five steps: (1) Define information needs, (2) Develop a formal Data Needs Model (DNM), (3) Use the DNM and DQ theory to develop goal-specific DQ assessment requirements, (4) Extract DNM-specified data, and (5) Evaluate according to DQ requirements. DataGauge\u27s main contribution is integrating general DQ theory and DQ assessment methods into a systematic process. This process supports the integration and practical implementation of existing Electronic Health Record-specific DQ assessment guidelines. DataGauge also provides an initial theory-based guidance framework that ties the DNM to DQ testing methods for each DQ dimension to aid the design of DQ assessments. This framework can be augmented with existing DQ guidelines to enable systematic assessment. DataGauge sets the stage for future systematic DQ assessment research by defining an assessment process, capable of adapting to a broad range of clinical datasets and secondary uses. Defining DataGauge sets the stage for new research directions such as DQ theory integration, DQ requirements portability research, DQ assessment tool development and DQ assessment tool usability

    Book Reviews

    Get PDF

    A Study of Time-Dependent CP-Violating Asymmetries and Flavor Oscillations in Neutral B Decays at the Upsilon(4S)

    Get PDF
    We present a measurement of time-dependent CP-violating asymmetries in neutral B meson decays collected with the BABAR detector at the PEP-II asymmetric-energy B Factory at the Stanford Linear Accelerator Center. The data sample consists of 29.7 fb1{\rm fb}^{-1} recorded at the Υ(4S)\Upsilon(4S) resonance and 3.9 fb1{\rm fb}^{-1} off-resonance. One of the neutral B mesons, which are produced in pairs at the Υ(4S)\Upsilon(4S), is fully reconstructed in the CP decay modes J/ψKS0J/\psi K^0_S, ψ(2S)KS0\psi(2S) K^0_S, χc1KS0\chi_{c1} K^0_S, J/ψK0J/\psi K^{*0} (K0KS0π0K^{*0}\to K^0_S\pi^0) and J/ψKL0J/\psi K^0_L, or in flavor-eigenstate modes involving D()π/ρ/a1D^{(*)}\pi/\rho/a_1 and J/ψK0J/\psi K^{*0} (K0K+πK^{*0}\to K^+\pi^-). The flavor of the other neutral B meson is tagged at the time of its decay, mainly with the charge of identified leptons and kaons. The proper time elapsed between the decays is determined by measuring the distance between the decay vertices. A maximum-likelihood fit to this flavor eigenstate sample finds Δmd=0.516±0.016(stat)±0.010(syst)ps1\Delta m_d = 0.516\pm 0.016 {\rm (stat)} \pm 0.010 {\rm (syst)} {\rm ps}^{-1}. The value of the asymmetry amplitude sin2β\sin2\beta is determined from a simultaneous maximum-likelihood fit to the time-difference distribution of the flavor-eigenstate sample and about 642 tagged B0B^0 decays in the CP-eigenstate modes. We find sin2β=0.59±0.14(stat)±0.05(syst)\sin2\beta=0.59\pm 0.14 {\rm (stat)} \pm 0.05 {\rm (syst)}, demonstrating that CP violation exists in the neutral B meson system. (abridged)Comment: 58 pages, 35 figures, submitted to Physical Review

    Measurement of the Branching Fraction for B- --> D0 K*-

    Get PDF
    We present a measurement of the branching fraction for the decay B- --> D0 K*- using a sample of approximately 86 million BBbar pairs collected by the BaBar detector from e+e- collisions near the Y(4S) resonance. The D0 is detected through its decays to K- pi+, K- pi+ pi0 and K- pi+ pi- pi+, and the K*- through its decay to K0S pi-. We measure the branching fraction to be B.F.(B- --> D0 K*-)= (6.3 +/- 0.7(stat.) +/- 0.5(syst.)) x 10^{-4}.Comment: 7 pages, 1 postscript figure, submitted to Phys. Rev. D (Rapid Communications
    corecore