14,664 research outputs found
Post-buckling behavior of a beam-column on a nonlinear elastic foundation with a gap
The structural behavior of an elastic beam-column placed with a gap between two nonlinearity elastic layers each resting on a rigid foundation was examined. The beam-column was laterally supported at both ends and subjected to a uniform transverse load and axial compression. Its slenderness was such that the axial compressive force exceeds the amount that would be necessary to buckle it as a simple supported column. The elastic layers were represented by an elastic foundation with a strongly nonlinear specific reaction taken as a rapidly increasing function of the layer compression. The analytical model developed simulated the entire pattern of the deflection and stress state including layer and end support reactions, under gradually increasing axial force
Turbulent Characteristics of Two-Phase, Gas-Liquid Stratified Channel Flow
The turbulence characteristics of the bulk phases were studied in a stratified, two-dimensional, gas- liquid channel flow. Initial results are presented comparing mean velocity and turbulent intensity profiles with those obtained in a prior study at the same bulk phase Reynolds numbers. The results indicate that comparison of two realizations of stratified gas- liquid flow cannot be adequately done on the basis of bulk-phase Reynolds numbers. Comparisons must be based on some more fundamental relationships involving the gas-liquid interactions
Star Spot Induced Radial Velocity Variability in LkCa 19
We describe a new radial velocity survey of T Tauri stars and present the
first results. Our search is motivated by an interest in detecting massive
young planets, as well as investigating the origin of the brown dwarf desert.
As part of this survey, we discovered large-amplitude, periodic, radial
velocity variations in the spectrum of the weak line T Tauri star LkCa 19.
Using line bisector analysis and a new simulation of the effect of star spots
on the photometric and radial velocity variability of T Tauri stars, we show
that our measured radial velocities for LkCa19 are fully consistent with
variations caused by the presence of large star spots on this rapidly rotating
young star. These results illustrate the level of activity-induced radial
velocity noise associated with at least some very young stars. This
activity-induced noise will set lower limits on the mass of a companion
detectable around LkCa 19, and similarly active young stars.Comment: ApJ accepted, 27 pages, 12 figures, aaste
Initial ecological recovery postâweir removal amidst catchmentâwide improvements, in a groundwaterâdominated chalk stream
Physical habitat modification is one of the main pressures affecting river environments, impacting their ecosystem health and compromising their ability to adapt to the effects of climate change. Addressing the impacts of physical modification through reinvigorating natural processes has become a globally established river restoration technique. Here, we appraised such an approach by assessing ecological responses to a weir removal project on an English groundwaterâdominated âchalkâ stream. Using a BeforeâAfterâControlâImpact (BACI) approach, we found that 3 years postârestoration the macroinvertebrate communities are moving towards those of the target community both in terms of structural complexity (e.g., taxonomic composition) and functional integrity (e.g., trait composition). The progress is ongoing and has occurred alongside wider catchment improvements. Our results indicate that ecological responses to passive restoration undertaken on low energy streams, such as chalk streams, may be gradual, and thus longerâterm assessment is needed to fully appraise ecological recovery. We highlight the importance of a BACI approach to understand the local responses to restoration in a catchment context. Our findings also provide further evidence highlighting complementary ecological information provided by assessing taxonomic and functional properties concurrently in postâproject appraisals. A better understanding of ecological recovery times should be incorporated into future restoration planning. Such evidence would help develop robust assessments over appropriate timescales, increasing the likelihood of accurately and effectively appraising restoration project success, and helping to build support to increase the scale and pace of restoration actions needed to address biodiversity loss
Simultaneous Multi-Wavelength Observations of Magnetic Activity in Ultracool Dwarfs. II. Mixed Trends in VB10 and LSR1835+32 and the Possible Role of Rotation
[Abridged] As part of our on-going investigation of magnetic activity in
ultracool dwarfs we present simultaneous radio, X-ray, UV, and optical
observations of LSR1835+32 (M8.5), and simultaneous X-ray and UV observations
of VB10 (M8), both with a duration of about 9 hours. LSR1835+32 exhibits
persistent radio emission and H-alpha variability on timescales of ~0.5-2 hr.
The detected UV flux is consistent with photospheric emission, and no X-ray
emission is detected to a deep limit of L_X/L_bol<10^-5.7. The H-alpha and
radio emission are temporally uncorrelated, and the ratio of radio to X-ray
luminosity exceeds the correlation seen in F-M6 stars by >2x10^4. Similarly,
L_Halpha/L_X>10 is at least 30 times larger than in early M dwarfs, and
eliminates coronal emission as the source of chromospheric heating. The lack of
radio variability during four rotations of LSR1835+32 requires a uniform
stellar-scale field of ~10 G, and indicates that the H-alpha variability is
dominated by much smaller scales, <10% of the chromospheric volume. VB10, on
the other hand, shows correlated flaring and quiescent X-ray and UV emission,
similar to the behavior of early M dwarfs. Delayed and densely-sampled optical
spectra exhibit a similar range of variability amplitudes and timescales to
those seen in the X-rays and UV, with L_Halpha/L_X~1. Along with our previous
observations of the M8.5 dwarf TVLM513-46546 we conclude that late M dwarfs
exhibit a mix of activity patterns, which points to a transition in the
structure and heating of the outer atmosphere by large-scale magnetic fields.
We find that rotation may play a role in generating the fields as evidenced by
a tentative correlation between radio activity and rotation velocity. The X-ray
emission, however, shows evidence for super-saturation at vsini>25 km/s.Comment: Submitted to Ap
The Angular Momentum Evolution of 0.1-10 Msun Stars From the Birthline to the Main Sequence
(Abridged) Projected rotational velocities (vsini) have been measured for a
sample of 145 stars with masses between 0.4 and >10 Msun (median mass 2.1 Msun)
located in the Orion star-forming complex. These measurements have been
supplemented with data from the literature for Orion stars with masses as low
as 0.1 Msun. The primary finding from analysis of these data is that the upper
envelope of the observed values of angular momentum per unit mass (J/M) varies
as M^0.25 for stars on convective tracks having masses in the range ~0.1 to ~3
Msun. This power law extends smoothly into the domain of more massive stars (3
to 10 Msun), which in Orion are already on the ZAMS. This result stands in
sharp contrast to the properties of main sequence stars, which show a break in
the power law and a sharp decline in J/M with decreasing mass for stars with M
<2 Msun. A second result of our study is that this break is seen already among
the PMS stars in our Orion sample that are on radiative tracks, even though
these stars are only a few million years old. A comparison of rotation rates
seen for stars on either side of the convective-radiative boundary shows that
stars do not rotate as solid bodies during the transition from convective to
radiative tracks.Comment: to appear in Ap
Simultaneous Multi-Wavelength Observations of Magnetic Activity in Ultracool Dwarfs. I. The Complex Behavior of the M8.5 Dwarf TVLM513-46546
[Abridged] We present the first simultaneous radio, X-ray, ultraviolet, and
optical spectroscopic observations of the M8.5 dwarf TVLM513-46546, with a
duration of 9 hours. These observations are part of a program to study the
origin of magnetic activity in ultracool dwarfs, and its impact on
chromospheric and coronal emission. Here we detect steady quiescent radio
emission superposed with multiple short-duration, highly polarized flares;
there is no evidence for periodic bursts previously reported for this object,
indicating their transient nature. We also detect soft X-ray emission, with
L_X/L_bol~10^-4.9, the faintest to date for any object later than M5, and a
possible weak X-ray flare. TVLM513-46546 continues the trend of severe
violation of the radio/X-ray correlation in ultracool dwarfs, by nearly 4
orders of magnitude. From the optical spectroscopy we find that the Balmer line
luminosity exceeds the X-ray luminosity by a factor of a few, suggesting that,
unlike in early M dwarfs, chromospheric heating may not be due to coronal X-ray
emission. More importantly, we detect a sinusoidal H-alpha light curve with a
period of 2 hr, matching the rotation period of TVLM513-46546. This is the
first known example of such Balmer line behavior, which points to a co-rotating
chromospheric hot spot or an extended magnetic structure, with a covering
fraction of about 50%. This feature may be transitory based on the apparent
decline in light curve peak during the four observed maxima. From the radio
data we infer a large scale steady magnetic field of ~100 G, in good agreement
with the value required for confinement of the X-ray emitting plasma. The radio
flares, on the other hand, are produced in a component of the field with a
strength of ~3 kG and a likely multi-polar configuration.Comment: 13 pages, 4 figure
Magnetic fields and accretion flows on the classical T Tauri star V2129 Oph
From observations collected with the ESPaDOnS spectropolarimeter, we report
the discovery of magnetic fields at the surface of the mildly accreting
classical T Tauri star V2129 Oph. Zeeman signatures are detected, both in
photospheric lines and in the emission lines formed at the base of the
accretion funnels linking the disc to the protostar, and monitored over the
whole rotation cycle of V2129 Oph. We observe that rotational modulation
dominates the temporal variations of both unpolarized and circularly polarized
line profiles. We reconstruct the large-scale magnetic topology at the surface
of V2129 Oph from both sets of Zeeman signatures simultaneously. We find it to
be rather complex, with a dominant octupolar component and a weak dipole of
strengths 1.2 and 0.35 kG, respectively, both slightly tilted with respect to
the rotation axis. The large-scale field is anchored in a pair of 2-kG unipolar
radial field spots located at high latitudes and coinciding with cool dark
polar spots at photospheric level. This large-scale field geometry is unusually
complex compared to those of non-accreting cool active subgiants with moderate
rotation rates. As an illustration, we provide a first attempt at modelling the
magnetospheric topology and accretion funnels of V2129 Oph using field
extrapolation. We find that the magnetosphere of V2129 Oph must extend to about
7R* to ensure that the footpoints of accretion funnels coincide with the
high-latitude accretion spots on the stellar surface. It suggests that the
stellar magnetic field succeeds in coupling to the accretion disc as far out as
the corotation radius, and could possibly explain the slow rotation of V2129
Oph. The magnetospheric geometry we derive produces X-ray coronal fluxes
typical of those observed in cTTSs.Comment: MNRAS, in press (18 pages, 17 figures
Corn as a Grazing Crop: An Option for Extending the Grazing Season in Kentucky
Grazing is the cheapest way to feed cattle on a cost per pound of nutrient basis. However, producers with limited land resources in Kentucky have been able to use commodities or grain by-products to increase cattle numbers due to low cost and availability of these inputs. Extending the grazing season is one solution that would enable producers to reduce cost and expand production with little or no impact on the environment
- âŠ