184 research outputs found

    Phenotypic plasticity in desiccation physiology of closely related, range restricted and broadly distributed fruit fly species

    Get PDF
    DATA AVAILABILITY STATEMENT : Data are available via Dryad Digital Repository https://doi.org/10.5061/dryad.1g1jwsv14 (Bosua et al., 2022).Variation in geographical range size among closely related species may result from differences in physiological traits, such as desiccation tolerance, that enable these species to interact with their environment or adapt to new surroundings. We tested the hypothesis that insect species with a broader geographical range have either a higher basal desiccation tolerance or mount a more plastic response than more narrowly distributed species by exposing four fruit fly species (Ceratitis capitata, Ceratitis rosa, Ceratitis cosyra and Ceratitis podocarpi) to one of three acclimation treatments (control: standard relative humidity (RH) and temperature; desiccation: standard temperature and low humidity; and temperature: low RH and high temperature) and measuring metabolic rate, activity, water loss rates and survival. The targeted physiological responses differed between species and acclimation treatments. Survival of the widely distributed C. capitata improved by up to 43% after short-term exposure to high temperature and desiccation (35°C; 0% RH) treatment, while survival in the more narrowly distributed species only improved by 4%–30% after a desiccation treatment (25°C; 0% RH). Less water was lost by broadly distributed C. capitata through excretion after both high temperature and desiccation treatments, but only activity and respiratory water loss (RWL) were reduced after the temperature treatment, and total water loss and cuticular water loss declined after the desiccation treatment. The narrowly distributed C. rosa also lost less water through excretion after both acclimation treatments but showed reduced cuticular and RWL only after desiccation. While basal tolerance in C. cosyra was high, acclimation responses in this species and C. podocarpi were insignificant in that they did not produce a measurable survival benefit. Broadly distributed species successfully employed unique combinations of physiological strategies, with some having highly flexible responses to stressful environmental conditions, which ultimately results in beneficial acclimation to enhance survival during dry conditions. By contrast, range restricted species showed limited responses to desiccation stress. Flexible desiccation responses likely contribute to species geographical ranges in changing climate conditions.DST-NRF Centre of Excellence for Invasion Biology; Stellenbosch University.http://www.wileyonlinelibrary.com/journal/fechj2024Zoology and EntomologySDG-15:Life on lan

    Cross-modal individual recognition in wild African lions

    Get PDF
    Individual recognition is considered to have been fundamental in the evolution of complex social systems and is thought to be a widespread ability throughout the animal kingdom. Although robust evidence for individual recognition remains limited, recent experimental paradigms that examine cross-modal processing have demonstrated individual recognition in a range of captive non-human animals. It is now highly relevant to test whether cross-modal individual recognition exists within wild populations and thus examine how it is employed during natural social interactions. We address this question by testing audio–visual cross-modal individual recognition in wild African lions (Panthera leo) using an expectancy-violation paradigm. When presented with a scenario where the playback of a loud-call (roaring) broadcast from behind a visual block is incongruent with the conspecific previously seen there, subjects responded more strongly than during the congruent scenario where the call and individual matched. These findings suggest that lions are capable of audio–visual cross-modal individual recognition and provide a useful method for studying this ability in wild populations

    The evolution of interdependence in a four-way mealybug symbiosis

    Get PDF
    Mealybugs are insects that maintain intracellular bacterial symbionts to supplement their nutrientpoor plant sap diets. Some mealybugs have a single betaproteobacterial endosymbiont, a Candidatus Tremblaya species (hereafter Tremblaya) that alone provides the insect with its required nutrients. Other mealybugs have two nutritional endosymbionts that together provide these nutrients, where Tremblaya has gained a gammaproteobacterial partner that resides in the cytoplasm of Tremblaya. Previous work had established that Pseudococcus longispinus mealybugs maintain not one but two species of gammaproteobacterial endosymbionts along with Tremblaya. Preliminary genomic analyses suggested that these two gammaproteobacterial endosymbionts have large genomes with features consistent with a relatively recent origin as insect endosymbionts, but the patterns of genomic complementarity between members of the symbiosis and their relative cellular locations were unknown. Here, using long-read sequencing and various types of microscopy, we show that the two gammaproteobacterial symbionts of P. longispinus are mixed together within Tremblaya cells, and that their genomes are somewhat reduced in size compared to their closest non-endosymbiotic relatives. Both gammaproteobacterial genomes contain thousands of pseudogenes, consistent with a relatively recent shift from a free-living to endosymbiotic lifestyle. Biosynthetic pathways of key metabolites are partitioned in complex interdependent patterns among the two gammaproteobacterial genomes, the Tremblaya genome, and horizontally acquired bacterial genes that are encoded on the mealybug nuclear genome. Although these two gammaproteobacterial endosymbionts have been acquired recently in evolutionary time, they have already evolved co-dependencies with each other, Tremblaya, and their insect host

    A No-Lose Theorem for Higgs Searches at a Future Linear Collider

    Get PDF
    Assuming perturbativity up to a high energy scale ∼1016\sim 10^{16} GeV, we demonstrate that a future e+e−e^+e^- linear collider operating at s=\sqrt{s} = 500 GeV with ∫L=\int{\cal L}= 500 fb−1^{-1} per year (such as the recently proposed TESLA facility) will detect a Higgs boson signal regardless of the complexity of the Higgs sector and of how the Higgs bosons decay.Comment: 4 pages, LaTe

    Thermal biology, population fluctuations and implications of temperature extremes for the management of two globally significant insect pests

    Get PDF
    CITATION: Nyamukondiwa, C. et al. 2013. Thermal biology, population fluctuations and implications of temperature extremes for the management of two globally significant insect pests. Journal of Insect Physiology, 59:1199-1211. doi:10.1016/j.jinsphys.2013.09.004The original publication is available at https://www.sciencedirect.com/journal/journal-of-insect-physiologyThe link between environmental temperature, physiological processes and population fluctuations is a significant aspect of insect pest management. Here, we explore how thermal biology affects the population abundance of two globally significant pest fruit fly species, Ceratitis capitata (medfly) and C. rosa (Natal fruit fly), including irradiated individuals and those expressing a temperature sensitive lethal (tsl) mutation that are used in the sterile insect technique. Results show that upper and lower lethal temperatures are seldom encountered at the field sites, while critical minimum temperatures for activity and lower developmental thresholds are crossed more frequently. Estimates of abundance revealed that C. capitata are active year-round, but abundance declines markedly during winter. Temporal autocorrelation of average fortnightly trap captures and of development time, estimated from an integrated model to calculate available degree days, show similar seasonal lags suggesting that population increases in early spring occur after sufficient degree-days have accumulated. By contrast, population collapses coincide tightly with increasing frequency of low temperature events that fall below critical minimum temperatures for activity. Individuals of C. capitata expressing the tsl mutation show greater critical thermal maxima and greater longevity under field conditions than reference individuals. Taken together, this evidence suggests that low temperatures limit populations in the Western Cape, South Africa and likely do so elsewhere. Increasing temperature extremes and warming climates generally may extend the season over which these species are active, and could increase abundance. The sterile insect technique may prove profitable as climates change given that laboratory-reared tsl flies have an advantage under warmer conditions.hortgro science, NRF, THRIP.https://www.sciencedirect.com/science/article/pii/S0022191013002060?via%3DihubPublisher’s versio

    Dynamics of direct inter-pack encounters in endangered African wild dogs

    Get PDF
    Aggressive encounters may have important life history consequences due to the potential for injury and death, disease transmission, dispersal opportunities or exclusion from key areas of the home range. Despite this, little is known of their detailed dynamics, mainly due to the difficulties of directly observing encounters in detail. Here, we describe detailed spatial dynamics of inter-pack encounters in African wild dogs (Lycaon pictus), using data from custom-built high-resolution GPS collars in 11 free-ranging packs. On average, each pack encountered another pack approximately every 7 weeks and met each neighbour twice each year. Surprisingly, intruders were more likely to win encounters (winning 78.6% of encounters by remaining closer to the site in the short term). However, intruders did tend to move farther than residents toward their own range core in the short-term (1 h) post-encounter, and if this were used to indicate losing an encounter, then the majority (73.3%) of encounters were won by residents. Surprisingly, relative pack size had little effect on encounter outcome, and injuries were rare (<15% of encounters). These results highlight the difficulty of remotely scoring encounters involving mobile participants away from static defendable food resources. Although inter-pack range overlap was reduced following an encounter, encounter outcome did not seem to drive this, as both packs shifted their ranges post-encounter. Our results indicate that inter-pack encounters may be lower risk than previously suggested and do not appear to influence long-term movement and ranging

    The CP-conserving two-Higgs-doublet model: the approach to the decoupling limit

    Get PDF
    A CP-even neutral Higgs boson with Standard-Model-like couplings may be the lightest scalar of a two-Higgs-doublet model. We study the decoupling limit of the most general CP-conserving two-Higgs-doublet model, where the mass of the lightest Higgs scalar is significantly smaller than the masses of the other Higgs bosons of the model. In this case, the properties of the lightest Higgs boson are nearly indistinguishable from those of the Standard Model Higgs boson. The first non-trivial corrections to Higgs couplings in the approach to the decoupling limit are also evaluated. The importance of detecting such deviations in precision Higgs measurements at future colliders is emphasized. We also clarify the case in which a neutral Higgs boson can possess Standard-Model-like couplings in a regime where the decoupling limit does not apply. The two-Higgs-doublet sector of the minimal supersymmetric model illustrates many of the above features.Comment: 54 pages, 2 tables, revtex4 format, some new material added (including elegant forms for the three-Higgs and four-Higgs couplings) and typographical errors fixe

    Tethered-flight performance of thermally-acclimated pest fruit flies (Diptera: Tephritidae) suggests that heat waves may promote the spread of Bactrocera species

    Get PDF
    DATA AVAILABILITY STATEMENT : Data is available on Figshare repository at 10.6084/m9.figshare.23300726.BACKGROUND : Thermal history may induce phenotypic plasticity in traits that affect performance and fitness. One type of plastic response triggered by thermal history is acclimation. Because flight is linked to movement in the landscape, trapping and detection rates, and underpins the success of pest management tactics, it is particularly important to understand how thermal history may affect pest insect flight performance. We investigated the tethered-flight performance of Ceratitis capitata, Bactrocera dorsalis and Bactrocera zonata (Diptera: Tephritidae), acclimated for 48 h at 20, 25 or 30 °C and tested at 25 °C. We recorded the total distance, average speed, number of flight events and time spent flying during 2-h tests. We also characterized morphometric traits (body mass, wing shape and wing loading) that can affect flight performance. RESULTS : The main factor affecting most flight traits was body mass. The heaviest species, B. dorsalis, flew further, was faster and stopped less often in comparison with the two other species. Bactrocera species exhibited faster and longer flight when compared with C. capitata, which may be associated with the shape of their wings. Moreover, thermal acclimation had sex- and species-specific effects on flight performance. Flies acclimated at 20 °C stopped more often, spent less time flying and, ultimately, covered shorter distances. CONCLUSION : Flight performance of B. dorsalis is greater than that of B. zonata and C. capitata. The effects of thermal acclimation are species-specific. Warmer acclimation temperatures may allow pest fruit flies to disperse further and faster.Horizon 2020 Framework Programme.http://wileyonlinelibrary.com/journal/pshj2024Zoology and EntomologyNon
    • …
    corecore