7,148 research outputs found
Movements, habitat utilization, and post-release survival of cobia (Rachycentron canadum) that summer in Virginia waters assessed using pop-up satellite archival tags
Cobia (Rachycentron canadum) is a cosmopolitan marine fish that inhabits tropical, sub-tropical, and temperate marine and estuarine waters and supports a major recreational fishery along the U.S. Atlantic and Gulf of Mexico coasts. Recent changes in U.S. cobia management have sparked controversy and highlighted limitations in our understanding of the speciesâ biology. This study utilized pop-up satellite archival tags (PSATs) to assess the movements, habitat utilization, and post-release survival of cobia that summer in Virginia water
Small Unmanned Aerial Systems (sUAS) for environmental remote sensing: challenges and opportunities revisited
Hardin and Jensen (2011) presented six challenges to using small Unmanned Aerial Systems (sUAS) for environmental remote sensing: challenge of the hostile flying environment, challenge of power, challenge of available sensors, challenge of payload weight, challenge of data analysis, and challenge of regulation. Eight years later we revisit each of the challenges in the context of the current sUAS environment. We conclude that technological advances made in the interim (as applied to environmental remote sensing) have either (1) improved practitioner ability to respond to a challenge or (2) decreased the magnitude of the challenge itself. However, relatively short flight time remains a primary challenge to using sUAS in environmental remote sensing
The Infrared Surface Brightness Fluctuation Distances to the Hydra and Coma Clusters
We present IR surface brightness fluctuation (SBF) distance measurements to
NGC 4889 in the Coma cluster and to NGC 3309 and NGC 3311 in the Hydra cluster.
We explicitly corrected for the contributions to the fluctuations from globular
clusters, background galaxies, and residual background variance. We measured a
distance of 85 +/- 10 Mpc to NGC 4889 and a distance of 46 +/- 5 Mpc to the
Hydra cluster. Adopting recession velocities of 7186 +/- 428 km/s for Coma and
4054 +/- 296 km/s for Hydra gives a mean Hubble constant of H_0 = 87 +/- 11
km/s/Mpc. Corrections for residual variances were a significant fraction of the
SBF signal measured, and, if underestimated, would bias our measurement towards
smaller distances and larger values of H_0. Both NICMOS on the Hubble Space
Telescope and large-aperture ground-based telescopes with new IR detectors will
make accurate SBF distance measurements possible to 100 Mpc and beyond.Comment: 24 pages, 4 PostScript figures, 2 JPEG images; accepted for
publication in Ap
Vertex-element models for anisotropic growth of elongated plant organs
New tools are required to address the challenge of relating plant hormone levels, hormone responses, wall biochemistry and wall mechanical properties to organ-scale growth. Current vertex-based models (applied in other contexts) can be unsuitable for simulating the growth of elongated organs such as roots because of the large aspect ratio of the cells, and these models fail to capture the mechanical properties of cell walls in sufficient detail. We describe a vertex-element model which resolves individual cells and includes anisotropic non-linear viscoelastic mechanical properties of cell walls and cell division whilst still being computationally efficient. We show that detailed consideration of the cell walls in the plane of a 2D simulation is necessary when cells have large aspect ratio, such as those in the root elongation zone of Arabidopsis thaliana, in order to avoid anomalous transverse swelling. We explore how differences in the mechanical properties of cells across an organ can result in bending and how cellulose microfibril orientation affects macroscale growth. We also demonstrate that the model can be used to simulate growth on realistic geometries, for example that of the primary root apex, using moderate computational resources. The model shows how macroscopic root shape can be sensitive to fine-scale cellular geometries
Hybrid vertex-midline modelling of elongated plant organs
We describe a method for the simulation of the growth of elongated plant organs, such as seedling roots. By combining a midline representation of the organ on a tissue scale and a vertex-based representation on the cell scale, we obtain a multiscale method, which is able to both simulate organ growth and incorporate cell-scale processes. Equations for the evolution of the midline are obtained, which depend on the cell-wall properties of individual cells through appropriate averages over the vertex-based representation. The evolution of the organ midline is used to deform the cellular-scale representation. This permits the investigation of the regulation of organ growth through the cell-scale transport of the plant hormone auxin. The utility of this method is demonstrated in simulating the early stages of the response of a root to gravity, using a vertex-based template acquired from confocal imaging. Asymmetries in the concentrations of auxin between the upper and lower sides of the root lead to bending of the root midline, reflecting a gravitropic response
The Relationship Between the Value Effect and Industry Affiliation
We examine industry affiliation and the relationship between stock returns and bookâtoâmarket equity (the value effect). The robustness of the value effect is supported as a significant value premium is shown to exist in 15 of 21 industries. Both industry and firmâlevel value effects are identified; however, the firmâlevel effect is the more prominent of the two. Further, the value effect is shown to be strongest in value industries and weakest in growth industries. Finally, we show evidence consistent with the claim that the value premium is due to investors requiring higher returns from firms in distressed conditions
Fish schooling as a basis for vertical axis wind turbine farm design
Most wind farms consist of horizontal axis wind turbines (HAWTs) due to the
high power coefficient (mechanical power output divided by the power of the
free-stream air through the turbine cross-sectional area) of an isolated
turbine. However when in close proximity to neighbouring turbines, HAWTs suffer
from a reduced power coefficient. In contrast, previous research on vertical
axis wind turbines (VAWTs) suggests that closely-spaced VAWTs may experience
only small decreases (or even increases) in an individual turbine's power
coefficient when placed in close proximity to neighbours, thus yielding much
higher power outputs for a given area of land. A potential flow model of
inter-VAWT interactions is developed to investigate the effect of changes in
VAWT spatial arrangement on the array performance coefficient, which compares
the expected average power coefficient of turbines in an array to a
spatially-isolated turbine. A geometric arrangement based on the configuration
of shed vortices in the wake of schooling fish is shown to significantly
increase the array performance coefficient based upon an array of 16x16 wind
turbines. Results suggest increases in power output of over one order of
magnitude for a given area of land as compared to HAWTs.Comment: Submitted for publication in BioInspiration and Biomimetics. Note:
The technology described in this paper is protected under both US and
international pending patents filed by the California Institute of Technolog
Analysis of the impact of collaborative ground delay programs in air traffic control
Thesis (S.M.)--Massachusetts Institute of Technology, Dept. of Civil and Environmental Engineering, 1999."February 1999."Includes bibliographical references (leaf 84).by John R. Jensen.S.M
- âŠ