Most wind farms consist of horizontal axis wind turbines (HAWTs) due to the
high power coefficient (mechanical power output divided by the power of the
free-stream air through the turbine cross-sectional area) of an isolated
turbine. However when in close proximity to neighbouring turbines, HAWTs suffer
from a reduced power coefficient. In contrast, previous research on vertical
axis wind turbines (VAWTs) suggests that closely-spaced VAWTs may experience
only small decreases (or even increases) in an individual turbine's power
coefficient when placed in close proximity to neighbours, thus yielding much
higher power outputs for a given area of land. A potential flow model of
inter-VAWT interactions is developed to investigate the effect of changes in
VAWT spatial arrangement on the array performance coefficient, which compares
the expected average power coefficient of turbines in an array to a
spatially-isolated turbine. A geometric arrangement based on the configuration
of shed vortices in the wake of schooling fish is shown to significantly
increase the array performance coefficient based upon an array of 16x16 wind
turbines. Results suggest increases in power output of over one order of
magnitude for a given area of land as compared to HAWTs.Comment: Submitted for publication in BioInspiration and Biomimetics. Note:
The technology described in this paper is protected under both US and
international pending patents filed by the California Institute of Technolog