42 research outputs found

    SUMO-Targeted Ubiquitin Ligase, Rad60, and Nse2 SUMO Ligase Suppress Spontaneous Top1–Mediated DNA Damage and Genome Instability

    Get PDF
    Through as yet undefined proteins and pathways, the SUMO-targeted ubiquitin ligase (STUbL) suppresses genomic instability by ubiquitinating SUMO conjugated proteins and driving their proteasomal destruction. Here, we identify a critical function for fission yeast STUbL in suppressing spontaneous and chemically induced topoisomerase I (Top1)–mediated DNA damage. Strikingly, cells with reduced STUbL activity are dependent on tyrosyl–DNA phosphodiesterase 1 (Tdp1). This is notable, as cells lacking Tdp1 are largely aphenotypic in the vegetative cell cycle due to the existence of alternative pathways for the removal of covalent Top1–DNA adducts (Top1cc). We further identify Rad60, a SUMO mimetic and STUbL-interacting protein, and the SUMO E3 ligase Nse2 as critical Top1cc repair factors in cells lacking Tdp1. Detection of Top1ccs using chromatin immunoprecipitation and quantitative PCR shows that they are elevated in cells lacking Tdp1 and STUbL, Rad60, or Nse2 SUMO ligase activity. These unrepaired Top1ccs are shown to cause DNA damage, hyper-recombination, and checkpoint-mediated cell cycle arrest. We further determine that Tdp1 and the nucleotide excision repair endonuclease Rad16-Swi10 initiate the major Top1cc repair pathways of fission yeast. Tdp1-based repair is the predominant activity outside S phase, likely acting on transcription-coupled Top1cc. Epistasis analyses suggest that STUbL, Rad60, and Nse2 facilitate the Rad16-Swi10 pathway, parallel to Tdp1. Collectively, these results reveal a unified role for STUbL, Rad60, and Nse2 in protecting genome stability against spontaneous Top1-mediated DNA damage

    Health benefits, costs, and cost-effectiveness of earlier eligibility for adult antiretroviral therapy and expanded treatment coverage: a combined analysis of 12 mathematical models.

    Get PDF
    BACKGROUND: New WHO guidelines recommend ART initiation for HIV-positive persons with CD4 cell counts ≤500 cells/µL, a higher threshold than was previously recommended. Country decision makers must consider whether to further expand ART eligibility accordingly. METHODS: We used multiple independent mathematical models in four settings-South Africa, Zambia, India, and Vietnam-to evaluate the potential health impact, costs, and cost-effectiveness of different adult ART eligibility criteria under scenarios of current and expanded treatment coverage, with results projected over 20 years. Analyses considered extending eligibility to include individuals with CD4 ≤500 cells/µL or all HIV-positive adults, compared to the previous recommendation of initiation with CD4 ≤350 cells/µL. We assessed costs from a health system perspective, and calculated the incremental cost per DALY averted (/DALY)tocomparecompetingstrategies.Strategieswereconsidered′verycost−effective′ifthe/DALY) to compare competing strategies. Strategies were considered 'very cost-effective' if the /DALY was less than the country's per capita gross domestic product (GDP; South Africa: 8040,Zambia:8040, Zambia: 1425, India: 1489,Vietnam:1489, Vietnam: 1407) and 'cost-effective' if /DALYwaslessthanthreetimespercapitaGDP.FINDINGS:InSouthAfrica,thecostperDALYavertedofextendingARTeligibilitytoCD4≤500cells/µLrangedfrom/DALY was less than three times per capita GDP. FINDINGS: In South Africa, the cost per DALY averted of extending ART eligibility to CD4 ≤500 cells/µL ranged from 237 to 1691/DALYcomparedto2010guidelines;inZambia,expandedeligibilityrangedfromimprovinghealthoutcomeswhilereducingcosts(i.e.dominatingcurrentguidelines)to1691/DALY compared to 2010 guidelines; in Zambia, expanded eligibility ranged from improving health outcomes while reducing costs (i.e. dominating current guidelines) to 749/DALY. Results were similar in scenarios with substantially expanded treatment access and for expanding eligibility to all HIV-positive adults. Expanding treatment coverage in the general population was therefore found to be cost-effective. In India, eligibility for all HIV-positive persons ranged from 131to131 to 241/DALY and in Vietnam eligibility for CD4 ≤500 cells/µL cost $290/DALY. In concentrated epidemics, expanded access among key populations was also cost-effective. INTERPRETATION: Earlier ART eligibility is estimated to be very cost-effective in low- and middle-income settings, although these questions should be revisited as further information becomes available. Scaling-up ART should be considered among other high-priority health interventions competing for health budgets. FUNDING: The Bill and Melinda Gates Foundation and World Health Organization

    Lysozyme

    No full text

    Molecular mimicry of SUMO promotes DNA repair

    No full text

    Some properties of transposition graphs

    No full text
    For every finite graph G without isolated vertices, there is an associated set of transpositions ((G) which correspond in a natural way to the edges of G. L1(G)s generates a group H which is a symmetric group iff G is connected. The Cayley graph f H,11) clearly depends only on G, and is called the transposition graph of G,.r(G).The distance between any two vertices of a transposition graph r(G) is established in the cases where G is a complete graph, a complete graph with an edge deleted,, a~path graph, or a star. The diameter of r(G) is obtained as a corollary in these cases.General upper and lower bounds: are found for the diameter of r(G) which depend on the number of vertices and the diameter of G.~' If G has no connected components isomorphic to C4 or Kn then the automorphisms of ('(G) are completely determined by the automorphisms of G. In particular, if G is a connected graphon n~vertices with no non-trivial automorphisms, then t7(G) is a graphical regular represent ation of Sn. Every transposition graph with at least four- vertices is hamiltonian. If the complement of the line graph of a graph G is hamiltonian then the genus of r(G) depends only on the number of vertices and edges of G. This result can be generalised if G has no circuits of length three. Finally, it is proved that the Complement of the line graph of a graph G is hamiltonian if every vertex of G is incident to at most half the edges of 0 and every edge of G is non-incident to at least two other edges of G,, provided G has at least thirty four edges.</p
    corecore