3 research outputs found

    Metalliteollisuuden yritysten resurssitarvekartoitus

    Get PDF
    Tämän opinnäytetyön toimeksiantaja oli Kainuun Etu Oy. Opinnäytetyön tarkoituksena oli selvittää Kainuun ja lähialueiden metalliteollisuuden yritysten resurssitarpeita. Pääasiassa selvityksen alla oli yritysten erityiskoneistustarpeet ja suorittavan tason henkilökunnan koulutustarpeet. Resurssitarvekartoitus tehtiin osana Kajaanin Otanmäkeen suunnitteilla olleen koulutustehtaan perustamisselvitystä. Opinnäytetyön tavoite oli saada tietoa potentiaalisten asiakasyritysten tarpeista, että perustettavassa tehtaassa päätöksiä tekevät henkilöt saavat lisätietoa tai varmistavaa tietoa päätöksenteon tueksi. Tiedon pääasiallinen käyttötarkoitus oli tehtaan alkutuotannon suunnittelu asiakkaiden tarpeita varten. Kyselyn piiriin kuuluvilta Kainuulaisilta yrityksiltä tiedusteltiin myös yrityksen tai yrittäjän halukkuudesta lähteä osakkaaksi tehtaaseen. Resurssitarvekartoitus suoritettiin kvalitatiivisena tutkimuksena. Suunniteltu kyselylomake lähetettiin sähköpostilla ennakkoon päätettyihin yrityksiin, ja siten aineisto kerättiin kyselyyn vastanneiden yritysten vastausten pohjalta. Tutkimuksen tulokset heijastelevat koulutustarpeiden osalta toimialan työvoimapulan vaikutuksia. Tarvetta on etenkin joko suorittavan tason työntekijöistä, tai sitten halutaan tuotannon automaatioon liittyvää koulutusta. Koneistuspuolelta tarvetta löytyi lähinnä raskaasta aarporauksesta. Opinnäytetyön tuloksilla ei luultavasti ole myöhempiä käyttömahdollisuuksia muuten kuin opinnäytetyön toimeksiantajalle, tai vastaavanlaisen kartoituksen suunnittelijalle. Kaikki yritysten lähettämät vastaukset käsiteltiin opinnäytetyön raporttia tehdessä luottamuksellisesti ja nimettömänä.This thesis was commissioned by Kainuun Etu Oy. The purpose was to find out about the nature of resource demands at metal industry companies. The companies were mainly located in the Kainuu and Northern Ostrobothnia regions. The primary resource demands to be examined were the companies' special machining needs and training needs for the companies' executive personnel. The resource demand survey was made as a part of the foundation report for a training workshop that was planned to be founded in Otanmäki, Kajaani. The purpose was to gather information about the needs of the potential business clients, so that the workshop management would get information to support their decision making. The primary purpose of the information was the planning of the workshop production according to the clients' needs. The companies located in the Kainuu region were also asked about their interest in being a shareholder in the planned workshop. The resource demand survey was conducted as qualitative research. The questionnaire was e-mailed to the group of companies, which was decided beforehand. The data was gathered from the companies' answers to the questionnaire. The results of the survey seem to reflect the effects of the labor shortage in the metal industry, especially in the training needs. Companies seem to need either executive personnel or training associated with industrial automation. There were no major machining needs apart from reaming, especially when it comes to machining large and heavy objects. There are probably no later utilization possibilities for this thesis, apart from the client or someone who plans to conduct a similar survey. While writing this thesis report, all the companies' answers were reported with confidentiality and anonymously

    Supplementary Material List from Computational tools for clinical support: a multi-scale compliant model for haemodynamic simulations in an aortic dissection based on multi-modal imaging data

    No full text
    Aortic dissection (AD) is a vascular condition with high morbidity and mortality rates. Computational fluid dynamics (CFD) can provide insight into the progression of AD and aid clinical decisions; however, oversimplified modelling assumptions and high computational cost compromise the accuracy of the information and impede clinical translation. To overcome these limitations, a patient-specific CFD multi-scale approach coupled to Windkessel boundary conditions and accounting for wall compliance was developed and used to study an AD patient. A new moving boundary algorithm was implemented to capture wall displacement and a rich <i>in vivo</i> clinical dataset was used to tune model parameters and for validation. Comparisons between <i>in silico</i> and <i>in vivo</i> data showed that this approach successfully captures flow and pressure waves for the patient-specific AD and is able to predict the pressure in the false lumen (FL), a critical variable for the clinical management of the condition. Results showed regions of low and oscillatory wall shear stress which, together with higher diastolic pressures predicted in the FL, may indicate risk of expansion. This study, at the interface of engineering and medicine, demonstrates a relatively simple and computationally efficient approach to account for arterial deformation and wave propagation phenomena in a three-dimensional model of AD, representing a step forward in the use of CFD as potential tool for AD management and clinical support

    Comparison of semi-automated methods to quantify infarct size and area at risk by cardiovascular magnetic resonance imaging at 1.5T and 3.0T field strengths.

    Get PDF
    Background: There is currently no gold standard technique for quantifying infarct size (IS) and ischaemic area-at-risk (AAR [oedema]) on late gadolinium enhancement imaging (LGE) and T2-weighted short tau inversion recovery imaging (T2w-STIR) respectively. This study aimed to compare the accuracy and reproducibility of IS and AAR quantification on LGE and T2w-STIR imaging using Otsu’s Automated Technique (OAT) with currently used methods at 1.5T and 3.0T post acute ST-segment elevation myocardial infarction (STEMI). Methods: Ten patients were assessed at 1.5T and 10 at 3.0T. IS was assessed on LGE using 5–8 standard-deviation thresholding (5-8SD), full-width half-maximum (FWHM) quantification and OAT. AAR was assessed on T2w-STIR using 2SD and OAT. Accuracy was assessed by comparison with manual quantification. Interobserver and intraobserver variabilities were assessed using Intraclass Correlation Coefficients and Bland-Altman analysis. IS using each technique was correlated with left ventricular ejection fraction (LVEF). Results: FWHM and 8SD-derived IS closely correlated with manual assessment at both field strengths (1.5T: 18.3 ± 10.7% LV Mass [LVM] with FWHM, 17.7 ± 14.4% LVM with 8SD, 16.5 ± 10.3% LVM with manual quantification; 3.0T: 10.8 ± 8.2% LVM with FWHM, 11.4 ± 9.0% LVM with 8SD, 11.5 ± 9.0% LVM with manual quantification). 5SD and OAT overestimated IS at both field strengths. OAT, 2SD and manually quantified AAR closely correlated at 1.5T, but OAT overestimated AAR compared with manual assessment at 3.0T. IS and AAR derived by FWHM and OAT respectively had better reproducibility compared with manual and SD-based quantification. FWHM IS correlated strongest with LVEF. Conclusions: FWHM quantification of IS is accurate, reproducible and correlates strongly with LVEF, whereas 5SD and OAT overestimate IS. OAT accurately assesses AAR at 1.5T and with excellent reproducibility. OAT overestimated AAR at 3.0T and thus cannot be recommended as the preferred method for AAR quantification at 3.0T
    corecore