10,863 research outputs found

    Determining the Extent of Market and Extent of Resource for Stated Preference Survey Design Using Mapping Methods

    Get PDF
    Determining the appropriate survey population and the commodity to be valued are among the most fundamental design decisions for stated preference (SP) surveys. However, often little information is available about who in the population holds measurable value for the resource (the extent of the market) and their perceptions regarding the scope of the resource to be valued (the extent of the resource). In this paper, we present a novel approach using cognitive mapping interview techniques to shed light on these design questions. The method also provides ancillary information that assists in the interpretation of information collected during focus groups and through SP survey administration. The approach was developed and tested as part of an ongoing study on environmental degradation associated with acidification in the Southern Appalachian Mountain region. Although damage from acidification in the study region is broad, it is not clear whether residents of this region care, in both a use and nonuse sense, about resources in their states of residence, in neighboring states, on public lands, or more broadly across the region. From a pilot study, we found that participants show a significant home-state preference in the number and size of natural areas that they value within the larger Southern Appalachian Mountain region. However, this preference is not strong enough to suggest that the market for improving these resources is solely constrained to residents of the state in which the resource is located.stated preference, cognitive mapping, extent of market, extent of resource, definition of commodity

    Unifying Amplitude and Phase Analysis: A Compositional Data Approach to Functional Multivariate Mixed-Effects Modeling of Mandarin Chinese

    Full text link
    Mandarin Chinese is characterized by being a tonal language; the pitch (or F0F_0) of its utterances carries considerable linguistic information. However, speech samples from different individuals are subject to changes in amplitude and phase which must be accounted for in any analysis which attempts to provide a linguistically meaningful description of the language. A joint model for amplitude, phase and duration is presented which combines elements from Functional Data Analysis, Compositional Data Analysis and Linear Mixed Effects Models. By decomposing functions via a functional principal component analysis, and connecting registration functions to compositional data analysis, a joint multivariate mixed effect model can be formulated which gives insights into the relationship between the different modes of variation as well as their dependence on linguistic and non-linguistic covariates. The model is applied to the COSPRO-1 data set, a comprehensive database of spoken Taiwanese Mandarin, containing approximately 50 thousand phonetically diverse sample F0F_0 contours (syllables), and reveals that phonetic information is jointly carried by both amplitude and phase variation.Comment: 49 pages, 13 figures, small changes to discussio

    Searching for Machos (and other Dark Matter Candidates) in a Simulated Galaxy

    Get PDF
    We conduct gravitational microlensing experiments in a galaxy taken from a cosmological N-body simulation. Hypothetical observers measure the optical depth and event rate toward hypothetical LMCs and compare their results with model predictions. Since we control the accuracy and sophistication of the model, we can determine how good it has to be for statistical errors to dominate over systematic ones. Several thousand independent microlensing experiments are performed. When the ``best-fit'' triaxial model for the mass distribution of the halo is used, the agreement between the measured and predicted optical depths is quite good: by and large the discrepancies are consistent with statistical fluctuations. If, on the other hand, a spherical model is used, systematic errors dominate. Even with our ``best-fit'' model, there are a few rare experiments where the deviation between the measured and predicted optical depths cannot be understood in terms of statistical fluctuations. In these experiments there is typically a clump of particles crossing the line of sight to the hypothetical LMC. These clumps can be either gravitationally bound systems or transient phenomena in a galaxy that is still undergoing phase mixing. Substructure of this type, if present in the Galactic distribution of Machos, can lead to large systematic errors in the analysis of microlensing experiments. We also describe how hypothetical WIMP and axion detection experiments might be conducted in a simulated N-body galaxy.Comment: 18 pages of text (LaTeX, AASTeX) with 12 figures. submitted to the Astrophysical Journa

    Reduced heterozygosity impairs sperm quality in endangered mammals

    Get PDF
    Inbreeding causes increases in homozygosity and is commonly associated with reductions in fertility and embryogenesis. Although the mechanisms underlying such effects are unknown, recent work has suggested that inbred males may suffer impaired ejaculate quality, thus providing a functional explanation for reductions in reproductive function in inbred populations. However, the relationship between inbreeding and sperm quality remains controversial, particularly in wild populations where the level of inbreeding is typically estimated using neutral molecular markers. Such markers are thought to reflect genome-wide levels of heterozygosity only under restricted conditions, and rarely in outbred populations. Here we employ a comparative approach that takes account of these criticisms and evaluates the evidence linking inbreeding to reductions in sperm quality in 20 mammal species. We focus on sperm abnormalities and sperm motility, which are key determinants of male fertility in many species. We show that species with reduced mean heterozygosity have impaired ejaculated quality, although subsequent analyses revealed that these effects were confined to endangered populations. Our findings therefore support the notion that inbreeding can severely impair sperm quality while concomitantly addressing criticisms surrounding the use of heterozygosity estimates to estimate the level of inbreeding

    Validation of a fornix depth measurer: a putative tool for the assessment of progressive cicatrising conjunctivitis

    Get PDF
    Background/aims Documentation of conjunctival forniceal foreshortening in cases of progressive cicatrising conjunctivitis (PCC) is important in ascertaining disease stage and progression. Lower fornix shortening is often documented subjectively or semi-objectively, whereas upper forniceal obliteration is seldom quantified. Although tools such as fornix depth measurers (FDMs) have been described, their designs limit upper fornix measurement. The purpose of this study was to custom-design a FDM to evaluate the upper fornix and to assess variability in gauging fornix depth. \ud \ud Methods A polymethylmethacrylate FDM was constructed using industry-standard jewellery computer software and machinery. Two observers undertook a prospective independent evaluation of central lower fornix depth in a heterogeneous cohort of patients with clinically normal and abnormal conjunctival fornices both subjectively and by using the FDM (in mm). Upper central fornix depth was also measured. Agreement was assessed using Bland–Altman plots. \ud \ud Results Fifty-one eyes were evaluated. There was 100% intraobserver agreement to within 1 mm for each observer for lower fornix measurement. The mean difference in fornix depth loss using the FDM between observer 1 and 2 was 1.19%, with 95% confidence of agreement (±2SD) of −15% to +20%. In total, 86% (44/51) of measurements taken by the two observers agreed to within 10% of total lower fornix depth (ie, ±1 mm) versus only 63% (32/51) of the subjective measurements. Mean upper fornix difference was 0.57 mm, with 95% confidence of agreement of between −2 and + 3 mm. \ud \ud Conclusions This custom-designed FDM is well tolerated by patients and shows low intraobserver and interobserver variability. This enables repeatable and reproducible measurement of upper and lower fornix depths, facilitating improved rates of detection and better monitoring of progression of conjunctival scarring

    Orbital-Free Density Functional Theory: Kinetic Potentials and Ab-Initio Local Pseudopotentials

    Full text link
    In the density functional (DF) theory of Kohn and Sham, the kinetic energy of the ground state of a system of noninteracting electrons in a general external field is calculated using a set of orbitals. Orbital free methods attempt to calculate this directly from the electron density by approximating the universal but unknown kinetic energy density functional. However simple local approximations are inaccurate and it has proved very difficult to devise generally accurate nonlocal approximations. We focus instead on the kinetic potential, the functional derivative of the kinetic energy DF, which appears in the Euler equation for the electron density. We argue that the kinetic potential is more local and more amenable to simple physically motivated approximations in many relevant cases, and describe two pathways by which the value of the kinetic energy can be efficiently calculated. We propose two nonlocal orbital free kinetic potentials that reduce to known exact forms for both slowly varying and rapidly varying perturbations and also reproduce exact results for the linear response of the density of the homogeneous system to small perturbations. A simple and systematic approach for generating accurate and weak ab-initio local pseudopotentials which produce a smooth slowly varying valence component of the electron density is proposed for use in orbital free DF calculations of molecules and solids. The use of these local pseudopotentials further minimizes the possible errors from the kinetic potentials. Our theory yields results for the total energies and ionization energies of atoms, and for the shell structure in the atomic radial density profiles that are in very good agreement with calculations using the full Kohn-Sham theory.Comment: To be published in Phys. Rev.
    corecore