87 research outputs found

    Dietary Cucumis melo Reduces Markers of Muscle and Articular Inflammation Following High-intensity Exercise in Horses

    Get PDF
    We evaluated the antioxidative and anti-inflammatory potential of daily oral supplementation with a proprietary powdered Cucumis melo pulp (CMP) on exercise-induced markers of articular and muscular oxidative stress and inflammation in 12 horses. Horses performed a high-intensity exercise test immediately prior to, and then following, 3 weeks of daily supplementation of 1 g powdered CMP (CMP; n=8). Controls (Co; n=8) underwent the same exercise and sampling regime but were not supplemented. Blood and synovial fluid (SF) samples were taken 24 h prior to exercise (BL), and at 1 and 24 h following exercise. Plasma and SF were analysed for prostaglandin E2 (PGE2), total antioxidant status (TAS), nitrite and superoxide dismutase (SOD) activity. SF was analysed for glycosaminoglycans (GAG), and plasma was analysed for thiobarbituric acid reactive substances (TBARS). Comparisons were made using repeated measures with the initial exercise test as a covariate. There was an increase in SF SOD activity in the CMP group. Compared to Co at 1 h, CMP reduced nitrite and GAG in SF, as well as maintained plasma TAS and lymphocyte levels. At 24 h, plasma PGE2 and creatine kinase were lower in horses receiving CMP. Three weeks of supplementation with CMP reduced markers of articular and skeletal muscle oxidative stress and inflammation in response to high-intensity exercise in horses. Nutritive antioxidants may provide a useful adjunct to the daily nutrition plan of horses undergoing regular exercise training and competition

    10. D40TA使用経験(第513回千葉医学会 第5回麻酔科例会 第10回千葉麻酔懇談会)

    Get PDF
    <p>Parameter sensitivity analysis for parameters related to postprandial insulin dynamics; (A,C,E) Predicted plasma glucose concentrations (mM) (B,D,F). Predicted plasma insulin concentrations (ng/ml).</p

    Bovine Mammary Gland Biopsy Techniques

    Get PDF
    Bovine mammary gland biopsies allow researchers to collect tissue samples to study cell biology including gene expression, histological analysis, signaling pathways, and protein translation. This article describes two techniques for biopsy of the bovine mammary gland (MG). Three healthy Holstein dairy cows were the subjects. Before biopsies, cows were milked and subsequently restrained in a cattle chute. An analgesic (flunixin meglumine, 1.1 to 2.2 mg/kg of body weight) was administered via jugular intravenous [IV] injection 15-20 min prior to biopsy. For standing sedation, xylazine hydrochloride (0.01-0.05 mg/kg of body weight) was injected via the coccygeal vessels 5-10 min before the procedure. Once adequately sedated, the biopsy site was aseptically prepared and locally anaesthetized with 6 mL of 2% lidocaine hydrochloride via subcutaneous injection. Using aseptic technique, a 2 to 3 cm vertical incision was made using a number 10 scalpel. Core and needle biopsy tools were used. The core biopsy tool was attached to a cordless drill and inserted into the MG tissue through the incision using a clock-wise drill action. The needle biopsy tool was manually inserted into the incision site. Immediately after the procedure, an assistant applied pressure on the incision site for 20 to 25 min using a sterile towel to achieve hemostasis. Stainless steel surgical staples were used to oppose the skin incision. The staples were removed 10 days post-procedure. The main advantages of core and needle biopsies is that both approaches are minimally invasive procedures that can be safely performed in healthy cows. Milk yield following the biopsy was unaffected. These procedures require a short recovery time and result in fewer risks of complications. Specific limitations may include bleeding after the biopsy and infection on the biopsy site. Applications of these techniques include tissue collection for clinical diagnosis and research purposes, such as primary cell culture

    Reproductive Conflict and the Evolution of Menopause in Killer Whales.

    Get PDF
    Why females of some species cease ovulation prior to the end of their natural lifespan is a long-standing evolutionary puzzle [1-4]. The fitness benefits of post-reproductive helping could in principle select for menopause [1, 2, 5], but the magnitude of these benefits appears insufficient to explain the timing of menopause [6-8]. Recent theory suggests that the cost of inter-generational reproductive conflict between younger and older females of the same social unit is a critical missing term in classical inclusive fitness calculations (the "reproductive conflict hypothesis" [6, 9]). Using a unique long-term dataset on wild resident killer whales, where females can live decades after their final parturition, we provide the first test of this hypothesis in a non-human animal. First, we confirm previous theoretical predictions that local relatedness increases with female age up to the end of reproduction. Second, we construct a new evolutionary model and show that given these kinship dynamics, selection will favor younger females that invest more in competition, and thus have greater reproductive success, than older females (their mothers) when breeding at the same time. Third, we test this prediction using 43 years of individual-based demographic data in resident killer whales and show that when mothers and daughters co-breed, the mortality hazard of calves from older-generation females is 1.7 times that of calves from younger-generation females. Intergenerational conflict combined with the known benefits conveyed to kin by post-reproductive females can explain why killer whales have evolved the longest post-reproductive lifespan of all non-human animals

    Dynamics of direct inter-pack encounters in endangered African wild dogs

    Get PDF
    Aggressive encounters may have important life history consequences due to the potential for injury and death, disease transmission, dispersal opportunities or exclusion from key areas of the home range. Despite this, little is known of their detailed dynamics, mainly due to the difficulties of directly observing encounters in detail. Here, we describe detailed spatial dynamics of inter-pack encounters in African wild dogs (Lycaon pictus), using data from custom-built high-resolution GPS collars in 11 free-ranging packs. On average, each pack encountered another pack approximately every 7 weeks and met each neighbour twice each year. Surprisingly, intruders were more likely to win encounters (winning 78.6% of encounters by remaining closer to the site in the short term). However, intruders did tend to move farther than residents toward their own range core in the short-term (1 h) post-encounter, and if this were used to indicate losing an encounter, then the majority (73.3%) of encounters were won by residents. Surprisingly, relative pack size had little effect on encounter outcome, and injuries were rare (<15% of encounters). These results highlight the difficulty of remotely scoring encounters involving mobile participants away from static defendable food resources. Although inter-pack range overlap was reduced following an encounter, encounter outcome did not seem to drive this, as both packs shifted their ranges post-encounter. Our results indicate that inter-pack encounters may be lower risk than previously suggested and do not appear to influence long-term movement and ranging

    Clinical spectrum and features of activated phosphoinositide 3-kinase δ syndrome: A large patient cohort study.

    Get PDF
    BACKGROUND: Activated phosphoinositide 3-kinase δ syndrome (APDS) is a recently described combined immunodeficiency resulting from gain-of-function mutations in PIK3CD, the gene encoding the catalytic subunit of phosphoinositide 3-kinase δ (PI3Kδ). OBJECTIVE: We sought to review the clinical, immunologic, histopathologic, and radiologic features of APDS in a large genetically defined international cohort. METHODS: We applied a clinical questionnaire and performed review of medical notes, radiology, histopathology, and laboratory investigations of 53 patients with APDS. RESULTS: Recurrent sinopulmonary infections (98%) and nonneoplastic lymphoproliferation (75%) were common, often from childhood. Other significant complications included herpesvirus infections (49%), autoinflammatory disease (34%), and lymphoma (13%). Unexpectedly, neurodevelopmental delay occurred in 19% of the cohort, suggesting a role for PI3Kδ in the central nervous system; consistent with this, PI3Kδ is broadly expressed in the developing murine central nervous system. Thoracic imaging revealed high rates of mosaic attenuation (90%) and bronchiectasis (60%). Increased IgM levels (78%), IgG deficiency (43%), and CD4 lymphopenia (84%) were significant immunologic features. No immunologic marker reliably predicted clinical severity, which ranged from asymptomatic to death in early childhood. The majority of patients received immunoglobulin replacement and antibiotic prophylaxis, and 5 patients underwent hematopoietic stem cell transplantation. Five patients died from complications of APDS. CONCLUSION: APDS is a combined immunodeficiency with multiple clinical manifestations, many with incomplete penetrance and others with variable expressivity. The severity of complications in some patients supports consideration of hematopoietic stem cell transplantation for severe childhood disease. Clinical trials of selective PI3Kδ inhibitors offer new prospects for APDS treatment.T.C. is supported by National Children’s Research Centre, Our Lady’s Children’s Hospital Crumlin, Dublin, Ireland. A.C. has a Wellcome Trust Postdoctoral Training Fellowship for Clinicians (103413/Z/13/Z). K.O. is supported by funding from BBSRC, MRC, Wellcome Trust and GSK. R.D. and D.S.K are funded by National Institute for Health Research (NIHR) Cambridge Biomedical Research Centre, Cambridge, UK. C.S. and S.E. are supported by the German Federal Ministry of Education and Research (BMBF 01 EO 0803 grant to the Center of Chronic immunodeficiency and BMBF 01GM1111B grant to the PID-NET initiative). S.N.F is supported in part by the Southampton UK National Institute for Health Research (NIHR) Wellcome Trust Clinical Research Facility and NIHR Respiratory Biomedical Research Unit. M.A.A.I. is funded by NHS Innovation London and King’s College Hospital Charitable Trust. A.F., S.L., A.D., F.R-L and S.K. are supported by the European Union’s 7th RTD Framework Programme (ERC advanced grant PID-IMMUNE contract 249816) and a government grant managed by the French Agence Nationale de la Recherche as part of the "Investments for the Future" program (ANR-10-IAHU-01). S.L. is supported by the Agence Nationale de la Recherche (ANR) (ANR-14-CE14-0028-01), the Foundation ARC pour la Recherche sur le Cancer (France), the Rare Diseases Foundation (France) and François Aupetit Association (France). S.L. is a senior scientist and S.K is a researcher at the Centre National de la Recherche Scientifique-CNRS (France). A.D. and S.K. are supported by the “Institut National de la Santé et de la Recherche Médicale". S.K. also supported by the Fondation pour la Recherche Médicale (grant number: ING20130526624), la Ligue Contre le Cancer (Comité de Paris) and the Centre de Référence Déficits Immunitaires Héréditaires (CEREDIH). S.O.B is supported by the Higher Education Funding Council for England. B.V. is supported by the UK Biotechnology and Biological Sciences Research Council [BB/I007806/1], Cancer Research UK [C23338/A15965) and the National Institute for Health Research (NIHR) University College London Hospitals Biomedical Research Centre. B.V. is consultant to Karus Therapeutics (Oxford, UK). S.N. is a Wellcome Trust Senior Research Fellow in Basic Biomedical Science (095198/Z/10/Z). S.N. is also supported by the European Research Council Starting grant 260477, the EU FP7 collaborative grant 261441 (PEVNET project) and the National Institute for Health Research (NIHR) Cambridge Biomedical Research Centre, UK. A.M.C. is funded by the Medical Research Council, British Lung Foundation, University of Sheffield and Cambridge NIHR-BRC. Research in A.M.C. laboratory has received non-commercial grant support from GSK, Novartis, and MedImmune.This is the author accepted manuscript. The final version is available from Elsevier via http://dx.doi.org/10.1016/j.jaci.2016.06.02

    Localization of type 1 diabetes susceptibility to the MHC class I genes HLA-B and HLA-A

    Get PDF
    The major histocompatibility complex (MHC) on chromosome 6 is associated with susceptibility to more common diseases than any other region of the human genome, including almost all disorders classified as autoimmune. In type 1 diabetes the major genetic susceptibility determinants have been mapped to the MHC class II genes HLA-DQB1 and HLA-DRB1 (refs 1-3), but these genes cannot completely explain the association between type 1 diabetes and the MHC region. Owing to the region's extreme gene density, the multiplicity of disease-associated alleles, strong associations between alleles, limited genotyping capability, and inadequate statistical approaches and sample sizes, which, and how many, loci within the MHC determine susceptibility remains unclear. Here, in several large type 1 diabetes data sets, we analyse a combined total of 1,729 polymorphisms, and apply statistical methods - recursive partitioning and regression - to pinpoint disease susceptibility to the MHC class I genes HLA-B and HLA-A (risk ratios >1.5; Pcombined = 2.01 × 10-19 and 2.35 × 10-13, respectively) in addition to the established associations of the MHC class II genes. Other loci with smaller and/or rarer effects might also be involved, but to find these, future searches must take into account both the HLA class II and class I genes and use even larger samples. Taken together with previous studies, we conclude that MHC-class-I-mediated events, principally involving HLA-B*39, contribute to the aetiology of type 1 diabetes. ©2007 Nature Publishing Group
    corecore