32 research outputs found

    Comparative Genome Analysis of the Photosynthetic Betaproteobacteria of the Genus Rhodocyclus: Heterogeneity within Strains Assigned to Rhodocyclus tenuis and Description of Rhodocyclus gracilis sp. nov. as a New Species

    Get PDF
    The genome sequences for Rhodocyclus purpureus DSM 168T and four strains assigned to Rhodocyclus tenuis (DSM 110, DSM 111, DSM 112, and IM 230) have been determined. One of the strains studied (IM 230) has an average nucleotide identity (ANI) of 97% to the recently reported genome of the type strain DSM 109 of Rcy. tenuis and is regarded as virtually identical at the species level. The ANI of 80% for three other strains (DSM 110, DSM 111, DSM 112) to the type strain of Rcy. tenuis points to a differentiation of these at the species level. Rcy. purpureus is equidistant from Rcy. tenuis and the new species, based on both ANI (78–80%) and complete proteome comparisons (70% AAI). Strains DSM 110, DSM 111, and DSM 112 are very closely related to each other based on ANI, whole genome, and proteome comparisons but clearly distinct from the Rcy. tenuis type strain DSM 109. In addition to the whole genome differentiation, these three strains also contain unique genetic differences in cytochrome genes and contain genes for an anaerobic cobalamin synthesis pathway that is lacking from both Rcy. tenuis and Rcy. purpureus. Based on genomic and genetic differences, these three strains should be considered to represent a new species, which is distinctly different from both Rcy. purpureus and Rcy. tenuis, for which the new name Rhodocyclus gracilis sp. nov. is proposed

    Spatial Scales of Bacterial Diversity in Cold-Water Coral Reef Ecosystems

    Get PDF
    Background: Cold-water coral reef ecosystems are recognized as biodiversity hotspots in the deep sea, but insights into their associated bacterial communities are still limited. Deciphering principle patterns of bacterial community variation over multiple spatial scales may however prove critical for a better understanding of factors contributing to cold-water coral reef stability and functioning. Methodology/Principal Findings: Bacterial community structure, as determined by Automated Ribosomal Intergenic Spacer Analysis (ARISA), was investigated with respect to (i) microbial habitat type and (ii) coral species and color, as well as the three spatial components (iii) geomorphologic reef zoning, (iv) reef boundary, and (v) reef location. Communities revealed fundamental differences between coral-generated (branch surface, mucus) and ambient microbial habitats (seawater, sediments). This habitat specificity appeared pivotal for determining bacterial community shifts over all other study levels investigated. Coral-derived surfaces showed species-specific patterns, differing significantly between Lophelia pertusa and Madrepora oculata, but not between L. pertusa color types. Within the reef center, no community distinction corresponded to geomorphologic reef zoning for both coral-generated and ambient microbial habitats. Beyond the reef center, however, bacterial communities varied considerably from local to regional scales, with marked shifts toward the reef periphery as well as between different in- and offshore reef sites, suggesting significant biogeographic imprinting but wea

    Composition of Microbial Oral Biofilms during Maturation in Young Healthy Adults

    Get PDF
    <div><p>In the present study we aimed to analyze the bacterial community structure of oral biofilms at different maturation stages in young healthy adults. Oral biofilms established on membrane filters were collected from 32 human subjects after 5 different maturation intervals (1, 3, 5, 9 and 14 days) and the respective phylogenetic diversity was analyzed by 16S rDNA amplicon sequencing. Our analyses revealed highly diverse entire colonization profiles, spread into 8 phyla/candidate divisions and in 15 different bacterial classes. A large inter-individual difference in the subjects’ microbiota was observed, comprising 35% of the total variance, but lacking conspicuous general temporal trends in both alpha and beta diversity. We further obtained strong evidence that subjects can be categorized into three clusters based on three differently occurring and mutually exclusive species clusters.</p></div
    corecore