20 research outputs found

    Soft pneumatic elbow exoskeleton reduces the muscle activity, metabolic cost and fatigue during holding and carrying of loads

    Get PDF
    To minimize fatigue, sustain workloads, and reduce the risk of injuries, the exoskeleton Carry was developed. Carry combines a soft human–machine interface and soft pneumatic actuation to assist the elbow in load holding and carrying. We hypothesize that the assistance of Carry would decrease, muscle activity, net metabolic rate, and fatigue. With Carry providing 7.2 Nm of assistance, we found reductions of up to 50% for the muscle activity, up to 61% for the net metabolic rate, and up to 99% for fatigue in a group study of 12 individuals. Analyses of operation dynamics and autonomous use demonstrate the applicability of Carry to a variety of use cases, presumably with increased benefits for increased assistance torque. The significant benefits of Carry indicate this device could prevent systemic, aerobic, and/or possibly local muscle fatigue that may increase the risk of joint degeneration and pain due to lifting, holding, or carrying

    Biologically inspired action representation on humanoids with a perspective for soft wearable robots

    No full text
    Although in many of the tasks in robotics, what is sought mainly includes accuracy, precision, flexibility, adaptivity, etc., yet in wearable robotics, there are some other aspects as well that could distinguish a reliable and promising approach. The three key elements that are addressed are as follows: control, actuation, and sensors. Where the goal for each of the previously mentioned objectives is to find a solution/design compatible with humans. A possible way to understand the human motor behaviours is to generate them on human-like robots. Biologically inspired action generation is promising in control of wearable robots as they provide more natural movements. Furthermore, wearable robotics shows exciting progress, also with its design. Soft exosuits use soft materials to build both sensors and actuators. This work investigates an adaptive representation model for actions in robotics. The concrete action model is composed of four modularities: pattern selection, spatial coordination, temporal coordination, and sensory-motor adaptation. Modularity in motor control might provide us with more insights about action learning and generalisation not only for humanoid robots but also for their biological counterparts. Successfully, we tested the model on a humanoid robot by learning to perform a variety of tasks (push recovery, walking, drawing, grasping, etc.). In the next part, we suggest several soft actuation mechanisms that overcome the problem of holding heavy loads and also the issue of on-line programming of the robot motion. The soft actuators use textile materials hosting thermoplastic polyurethane formed as inflatable tubes. Tubes were folded inside housing channels with one strain-limited side to create a flexor actuator. We proposed a new design to control the strained side of the actuator by adding four textile cords along its longitudinal axis. As a result, the actuator behaviour can be on-line programmed to bend and twist in several directions. In the last part of this thesis, we organised piezoresistive elements in a superimposition structure. The sensory structure is used on a sensory gripper to sense and distinguish between pressure and curvature stimuli. Next, we elaborated the sensing gripper by adding proximity sensing through conductive textile parts added to the gripper and work as capacitive sensors. We finally developed a versatile soft strain sensor that uses silicone tubes with an embedded solution that has an electrical resistance proportional to the strain applied on the tubes. Therefore, an entirely soft sensing glove exhibits hand gestures recognition. The proposed combinations of soft actuators, soft sensors, and biologically inspired action representation might open a new perspective to obtain smart wearable robots.Obwohl bei vielen Aufgaben in der Robotik vor allem Genauigkeit, PrĂ€zision, FlexibilitĂ€t, AnpassungsfĂ€higkeit usw. gefragt sind, gibt es in der Wearable-Robotik auch einige andere Aspekte, die einen zuverlĂ€ssigen und vielversprechenden Ansatz kennzeichnen. Die drei SchlĂŒsselelemente, sind die folgenden: Steuerung, Aktuatoren und Sensoren. Dabei ist das Ziel fĂŒr jedes der genannten Elemente, eine menschengerechte Lösung und ein menschengerechtes Design zu finden. Eine Möglichkeit, die menschliche Motorik zu verstehen, besteht darin, sie auf menschenĂ€hnlichen Robotern zu erzeugen. Biologisch inspirierte BewegungsablĂ€ufe sind vielversprechend bei der Steuerung von tragbaren Robotern, da sie natĂŒrlichere Bewegungen ermöglichen. DarĂŒber hinaus zeigt die tragbare Robotik spannende Fortschritte bei ihrem Design. Zum Beispiel verwenden softe Exoskelette weiche Materialien, um sowohl Sensoren als auch Aktuatoren zu erschaffen. Diese Arbeit erforscht ein adaptives ReprĂ€sentationsmodell fĂŒr Bewegungen in der Robotik. Das konkrete Bewegungsmodell besteht aus vier ModularitĂ€ten: Musterauswahl, rĂ€umliche Koordination, zeitliche Koordination und sensorisch-motorische Anpassung. Diese ModularitĂ€t in der Motorsteuerung könnte uns mehr Erkenntnisse ĂŒber das Erlernen und Verallgemeinern von Handlungen nicht nur fĂŒr humanoide Roboter, sondern auch fĂŒr ihre biologischen GegenstĂŒcke liefern. Erfolgreich testeten wir das Modell an einem humanoiden Roboter, indem dieser gelernt hat eine Vielzahl von Aufgaben auszufĂŒhren (Stoß-Ausgleichsbewegungen, Gehen, Zeichnen, Greifen, etc.). Im Folgenden schlagen wir mehrere weiche Aktuatoren vor, welche das Problem des Haltens schwerer Lasten und auch die Frage der Online- Programmierung der Roboterbewegung lösen. Diese weichen Aktuatoren verwenden textile Materialien mit thermoplastischem Polyurethan, die als aufblasbare SchlĂ€uche geformt sind. Die SchlĂ€uche wurden in GehĂ€usekanĂ€le mit einer dehnungsbegrenzten Seite gefaltet, um Flexoren zu schaffen. Wir haben ein neues Design vorgeschlagen, um die angespannte Seite eines Flexors zu kontrollieren, indem wir vier textile SchnĂŒre entlang seiner LĂ€ngsachse hinzufĂŒgen. Dadurch kann das Verhalten des Flexors online programmiert werden, um ihn in mehrere Richtungen zu biegen und zu verdrehen. Im letzten Teil dieser Arbeit haben wir piezoresistive Elemente in einer Überlagerungsstruktur organisiert. Die sensorische Struktur wird auf einem sensorischen Greifer verwendet, um Druck- und KrĂŒmmungsreize zu erfassen und zu unterscheiden. Den sensorischen Greifer haben wir weiterentwickelt indem wir kapazitiv arbeitende NĂ€herungssensoren mittels leitfĂ€higer Textilteile hinzufĂŒgten. Schließlich entwickelten wir einen vielseitigen weichen Dehnungssensor, der SilikonschlĂ€uche mit einer eingebetteten resistiven Lösung verwendet, deren Wiederstand sich proportional zur Belastung der SchlĂ€uche verhĂ€lt. Dies ermöglicht einem völlig weichen Handschuh die Erkennung von Handgesten. Die vorgeschlagenen Kombinationen aus weichen Aktuatoren, weichen Sensoren und biologisch inspirierter BewegungsreprĂ€sentation kann eine neue Perspektive eröffnen, um intelligente tragbare Roboter zu erschaffen

    Biologically inspired action representation on humanoids with a perspective for soft wearable robots

    Get PDF
    Although in many of the tasks in robotics, what is sought mainly includes accuracy, precision, flexibility, adaptivity, etc., yet in wearable robotics, there are some other aspects as well that could distinguish a reliable and promising approach. The three key elements that are addressed are as follows: control, actuation, and sensors. Where the goal for each of the previously mentioned objectives is to find a solution/design compatible with humans. A possible way to understand the human motor behaviours is to generate them on human-like robots. Biologically inspired action generation is promising in control of wearable robots as they provide more natural movements. Furthermore, wearable robotics shows exciting progress, also with its design. Soft exosuits use soft materials to build both sensors and actuators. This work investigates an adaptive representation model for actions in robotics. The concrete action model is composed of four modularities: pattern selection, spatial coordination, temporal coordination, and sensory-motor adaptation. Modularity in motor control might provide us with more insights about action learning and generalisation not only for humanoid robots but also for their biological counterparts. Successfully, we tested the model on a humanoid robot by learning to perform a variety of tasks (push recovery, walking, drawing, grasping, etc.). In the next part, we suggest several soft actuation mechanisms that overcome the problem of holding heavy loads and also the issue of on-line programming of the robot motion. The soft actuators use textile materials hosting thermoplastic polyurethane formed as inflatable tubes. Tubes were folded inside housing channels with one strain-limited side to create a flexor actuator. We proposed a new design to control the strained side of the actuator by adding four textile cords along its longitudinal axis. As a result, the actuator behaviour can be on-line programmed to bend and twist in several directions. In the last part of this thesis, we organised piezoresistive elements in a superimposition structure. The sensory structure is used on a sensory gripper to sense and distinguish between pressure and curvature stimuli. Next, we elaborated the sensing gripper by adding proximity sensing through conductive textile parts added to the gripper and work as capacitive sensors. We finally developed a versatile soft strain sensor that uses silicone tubes with an embedded solution that has an electrical resistance proportional to the strain applied on the tubes. Therefore, an entirely soft sensing glove exhibits hand gestures recognition. The proposed combinations of soft actuators, soft sensors, and biologically inspired action representation might open a new perspective to obtain smart wearable robots.Obwohl bei vielen Aufgaben in der Robotik vor allem Genauigkeit, PrĂ€zision, FlexibilitĂ€t, AnpassungsfĂ€higkeit usw. gefragt sind, gibt es in der Wearable-Robotik auch einige andere Aspekte, die einen zuverlĂ€ssigen und vielversprechenden Ansatz kennzeichnen. Die drei SchlĂŒsselelemente, sind die folgenden: Steuerung, Aktuatoren und Sensoren. Dabei ist das Ziel fĂŒr jedes der genannten Elemente, eine menschengerechte Lösung und ein menschengerechtes Design zu finden. Eine Möglichkeit, die menschliche Motorik zu verstehen, besteht darin, sie auf menschenĂ€hnlichen Robotern zu erzeugen. Biologisch inspirierte BewegungsablĂ€ufe sind vielversprechend bei der Steuerung von tragbaren Robotern, da sie natĂŒrlichere Bewegungen ermöglichen. DarĂŒber hinaus zeigt die tragbare Robotik spannende Fortschritte bei ihrem Design. Zum Beispiel verwenden softe Exoskelette weiche Materialien, um sowohl Sensoren als auch Aktuatoren zu erschaffen. Diese Arbeit erforscht ein adaptives ReprĂ€sentationsmodell fĂŒr Bewegungen in der Robotik. Das konkrete Bewegungsmodell besteht aus vier ModularitĂ€ten: Musterauswahl, rĂ€umliche Koordination, zeitliche Koordination und sensorisch-motorische Anpassung. Diese ModularitĂ€t in der Motorsteuerung könnte uns mehr Erkenntnisse ĂŒber das Erlernen und Verallgemeinern von Handlungen nicht nur fĂŒr humanoide Roboter, sondern auch fĂŒr ihre biologischen GegenstĂŒcke liefern. Erfolgreich testeten wir das Modell an einem humanoiden Roboter, indem dieser gelernt hat eine Vielzahl von Aufgaben auszufĂŒhren (Stoß-Ausgleichsbewegungen, Gehen, Zeichnen, Greifen, etc.). Im Folgenden schlagen wir mehrere weiche Aktuatoren vor, welche das Problem des Haltens schwerer Lasten und auch die Frage der Online- Programmierung der Roboterbewegung lösen. Diese weichen Aktuatoren verwenden textile Materialien mit thermoplastischem Polyurethan, die als aufblasbare SchlĂ€uche geformt sind. Die SchlĂ€uche wurden in GehĂ€usekanĂ€le mit einer dehnungsbegrenzten Seite gefaltet, um Flexoren zu schaffen. Wir haben ein neues Design vorgeschlagen, um die angespannte Seite eines Flexors zu kontrollieren, indem wir vier textile SchnĂŒre entlang seiner LĂ€ngsachse hinzufĂŒgen. Dadurch kann das Verhalten des Flexors online programmiert werden, um ihn in mehrere Richtungen zu biegen und zu verdrehen. Im letzten Teil dieser Arbeit haben wir piezoresistive Elemente in einer Überlagerungsstruktur organisiert. Die sensorische Struktur wird auf einem sensorischen Greifer verwendet, um Druck- und KrĂŒmmungsreize zu erfassen und zu unterscheiden. Den sensorischen Greifer haben wir weiterentwickelt indem wir kapazitiv arbeitende NĂ€herungssensoren mittels leitfĂ€higer Textilteile hinzufĂŒgten. Schließlich entwickelten wir einen vielseitigen weichen Dehnungssensor, der SilikonschlĂ€uche mit einer eingebetteten resistiven Lösung verwendet, deren Wiederstand sich proportional zur Belastung der SchlĂ€uche verhĂ€lt. Dies ermöglicht einem völlig weichen Handschuh die Erkennung von Handgesten. Die vorgeschlagenen Kombinationen aus weichen Aktuatoren, weichen Sensoren und biologisch inspirierter BewegungsreprĂ€sentation kann eine neue Perspektive eröffnen, um intelligente tragbare Roboter zu erschaffen

    Soft pneumatic elbow exoskeleton reduces the muscle activity, metabolic cost and fatigue during holding and carrying of loads

    No full text
    Abstract To minimize fatigue, sustain workloads, and reduce the risk of injuries, the exoskeleton Carry was developed. Carry combines a soft human–machine interface and soft pneumatic actuation to assist the elbow in load holding and carrying. We hypothesize that the assistance of Carry would decrease, muscle activity, net metabolic rate, and fatigue. With Carry providing 7.2 Nm of assistance, we found reductions of up to 50% for the muscle activity, up to 61% for the net metabolic rate, and up to 99% for fatigue in a group study of 12 individuals. Analyses of operation dynamics and autonomous use demonstrate the applicability of Carry to a variety of use cases, presumably with increased benefits for increased assistance torque. The significant benefits of Carry indicate this device could prevent systemic, aerobic, and/or possibly local muscle fatigue that may increase the risk of joint degeneration and pain due to lifting, holding, or carrying

    Editorial Article

    No full text
    The world we are living in changes extremely fast, as technology is improving at an unseen pace. Smart mobile devices were luxury devices just a few years ago, while many people simply cannot imagine their daily life without them today. Robots are nowadays leaving the industrial or laboratory environments to reach people’s homes, schools and workplaces, opening new opportunities for applications of embedded systems

    Learning of Central Pattern Generator Coordination in Robot Drawing

    Get PDF
    How do robots learn to perform motor tasks in a specific condition and apply what they have learned in a new condition? This paper proposes a framework for motor coordination acquisition of a robot drawing straight lines within a part of the workspace. Then, it addresses transferring the acquired coordination into another area of the workspace while performing the same task. Motor patterns are generated by a Central Pattern Generator (CPG) model. The motor coordination for a given task is acquired by using a multi-objective optimization method that adjusts the CPGs' parameters involved in the coordination. To transfer the acquired motor coordination to the whole workspace we employed (1) a Self-Organizing Map that represents the end-effector coordination in the Cartesian space, and (2) an estimation method based on Inverse Distance Weighting that estimates the motor program parameters for each SOM neuron. After learning, the robot generalizes the acquired motor program along the SOM network. It is able therefore to draw lines from any point in the 2D workspace and with different orientations. Aside from the obvious distinctiveness of the proposed framework from those based on inverse kinematics typically leading to a point-to-point drawing, our approach also permits of transferring the motor program throughout the workspace

    Experience-based Learning Mechanism for Neural Controller Adaptation: Application to Walking Biped Robots

    No full text
    International audienceNeurobiology studies showed that the role of the Anterior Cingulate Cortex of the brain is primarily responsible for avoiding repeated mistakes. According to vigilance threshold, which denotes the tolerance to risks, we can differentiate between a learning mechanism that takes risks, and one that averts risks. The tolerance to risk plays an important role in such learning mechanism. Results have shown the differences in learning capacity between risk-taking and risk avert behaviors. In this paper we propose a learning mechanism that is able to learn from negative and positive feedback. It is composed of two phases, evaluation and decision-making phase. In the evaluation phase, we use a Kohonen Self Organizing Map technique to represent success and failure. Decision-making is based on an early warning mechanism that enables to avoid repeating past mistakes. Our approach is presented with an implementation on a simulated planar biped robot, controlled by a reflexive lowlevel neural controller. The learning system adapts the dynamics and range of a hip sensor neuron of the controller in order for the robot to walk on flat and slope terrain. Results show that success and failure maps can learn better with a threshold that is more tolerant to risk. This gives rise to robustness to the controller even in the presence of slope variations

    Qualitative Adaptive Reward Learning With Success Failure Maps: Applied to Humanoid Robot Walking

    No full text
    International audienceIn the human brain, rewards are encoded in a flexible and adaptive way after each novel stimulus. Neurons of the orbitofrontal cortex are the key reward structure of the brain. Neurobiological studies show that the anterior cingulate cortex of the brain is primarily responsible for avoiding repeated mistakes. According to vigilance threshold, which denotes the tolerance to risks, we can differentiate between a learning mechanism that takes risks and one that averts risks. The tolerance to risk plays an important role in such a learning mechanism. Results have shown the differences in learning capacity between risk-taking and risk-avert behaviors. These neurological properties provide promising inspirations for robot learning based on rewards. In this paper, we propose a learning mechanism that is able to learn from negative and positive feedback with reward coding adaptively. It is composed of two phases: evaluation and decision making. In the evaluation phase, we use a Kohonen self-organizing map technique to represent success and failure. Decision making is based on an early warning mechanism that enables avoiding repeating past mistakes. The behavior to risk is modulated in order to gain experiences for success and for failure. Success map is learned with adaptive reward that qualifies the learned task in order to optimize the efficiency. Our approach is presented with an implementation on the NAO humanoid robot, controlled by a bioinspired neural controller based on a central pattern generator. The learning system adapts the oscillation frequency and the motor neuron gain in pitch and roll in order to walk on flat and sloped terrain, and to switch between them

    Multi-layered multi-pattern CPG for adaptive locomotion of humanoid robots

    No full text
    International audienceIn this paper, we present an extended mathe-matical model of the central pattern generator (CPG) in the spinal cord. The proposed CPG model is used as the under-lying low-level controller of a humanoid robot to generate various walking patterns. Such biological mechanisms have been demonstrated to be robust in locomotion of animal. Our model is supported by two neurophysiological studies. The ïŹrst study identiïŹed a neural circuitry consisting of a two-layered CPG, in which pattern formation and rhythm gen-eration are produced at different levels. The second study focused on a speciïŹc neural model that can generate differ-ent patterns, including oscillation. This neural model was employed in the pattern generation layer of our CPG, which enables it to produce different motion patterns—rhythmic as well as non-rhythmic motions. Due to the pattern-formation layer, the CPG is able to produce behaviors related to the dominating rhythm (extension/ïŹ‚exion) and rhythm deletion without rhythm resetting. The proposed multi-layered multi-pattern CPG model (MLMP-CPG) has been deployed in a 3D humanoid robot (NAO) while it performs locomotion tasks. The effectiveness of our model is demonstrated in simula-tions and through experimental results
    corecore