1,321 research outputs found

    Incremental Doses of Nitrate-Rich Beetroot Juice Do Not Modify Cognitive Function and Cerebral Blood Flow in Overweight and Obese Older Adults: A 13-Week Pilot Randomised Clinical Trial

    Get PDF
    Nitrate-rich food increases nitric oxide (NO) production and may have beneficial effects on vascular, metabolic, and brain function. This pilot study tested the effects of prolonged consumption of a range of doses of dietary nitrate (NO3−), provided as beetroot juice, on cognitive function and cerebral blood flow (CBF) in overweight and obese older participants. The study had a 13-week single-blind, randomised, parallel design, and 62 overweight and obese older participants (aged 60 to 75 years) received the following interventions: (1) high NO3− (2 × 70 mL beetroot juice/day) (2) medium NO3− (70 mL beetroot juice/day), (3) low NO3− (70 mL beetroot juice on alternate days), or (4) placebo (70 mL of NO3−-depleted beetroot juice on alternate days). Cognitive functions were assessed using the Computerised Mental Performance Assessment System (COMPASS) assessment battery. CBF, monitored by concentration changes in oxygenated and deoxygenated haemoglobin, was assessed in the frontal cortex using near-infrared spectroscopy. The findings of this pilot study showed that cognitive function and CBF were not affected by supplementation with NO3−-rich beetroot juice for 13 weeks, irrespective of the NO3− dose administered. These findings require confirmation in larger studies using more sophisticated imaging methods (i.e., MRI) to determine whether prolonged dietary NO3− supplementation influences brain function in older overweight people

    Microbiota Modulate Host Gene Expression via MicroRNAs

    Get PDF
    Microbiota are known to modulate host gene expression, yet the underlying molecular mechanisms remain elusive. MicroRNAs (miRNAs) are importantly implicated in many cellular functions by post-transcriptionally regulating gene expression via binding to the 3′-untranslated regions (3′-UTRs) of the target mRNAs. However, a role for miRNAs in microbiota-host interactions remains unknown. Here we investigated if miRNAs are involved in microbiota-mediated regulation of host gene expression. Germ-free mice were colonized with the microbiota from pathogen-free mice. Comparative profiling of miRNA expression using miRNA arrays revealed one and eight miRNAs that were differently expressed in the ileum and the colon, respectively, of colonized mice relative to germ-free mice. A computational approach was then employed to predict genes that were potentially targeted by the dysregulated miRNAs during colonization. Overlapping the miRNA potential targets with the microbiota-induced dysregulated genes detected by a DNA microarray performed in parallel revealed several host genes that were regulated by miRNAs in response to colonization. Among them, Abcc3 was identified as a highly potential miRNA target during colonization. Using the murine macrophage RAW 264.7 cell line, we demonstrated that mmu-miR-665, which was dysregulated during colonization, down-regulated Abcc3 expression by directly targeting the Abcc3 3′-UTR. In conclusion, our study demonstrates that microbiota modulate host microRNA expression, which could in turn regulate host gene expression

    Acceptability and Feasibility of a 13-Week Pilot Randomised Controlled Trial Testing the Effects of Incremental Doses of Beetroot Juice in Overweight and Obese Older Adults

    Get PDF
    Nitrate-rich food can increase nitric oxide production and improve vascular and brain functions. This study examines the feasibility of a randomised controlled trial (RCT) testing the effects of prolonged consumption of different doses of dietary nitrate (NO3-) in the form of beetroot juice (BJ) in overweight and obese older participants. A single-blind, four-arm parallel pilot RCT was conducted in 62 overweight and obese (30.4 ± 4 kg/m2) older participants (mean ± standard deviation (SD), 66 ± 4 years). Participants were randomized to: (1) high-NO3- (HN: 2 × 70 mL BJ/day) (2) medium-NO3- (MN: 70 mL BJ/day), (3) low-NO3- (LN: 70 mL BJ on alternate days) or (4) Placebo (PL: 70 mL of NO3--depleted BJ on alternate days), for 13 weeks. Compliance was checked by a daily log of consumed BJ, NO3- intake, and by measuring NO3- and NO2- concentrations in plasma, saliva, and urine samples. Fifty participants completed the study. Self-reported compliance to the interventions was >90%. There were significant positive linear relationships between NO3- dose and the increase in plasma and urinary NO3- concentration (R2 = 0.71, P 0.001 and R2 = 0.46 P 0.001, respectively), but relationships between NO3- dose and changes in salivary NO3- and NO2- were non-linear (R2 = 0.35, P = 0.002 and R2 = 0.23, P = 0.007, respectively). The results confirm the feasibility of prolonged BJ supplementation in older overweight and obese adults

    Assessing the Utility of Thermodynamic Features for microRNA Target Prediction under Relaxed Seed and No Conservation Requirements

    Get PDF
    BACKGROUND: Many computational microRNA target prediction tools are focused on several key features, including complementarity to 5'seed of miRNAs and evolutionary conservation. While these features allow for successful target identification, not all miRNA target sites are conserved and adhere to canonical seed complementarity. Several studies have propagated the use of energy features of mRNA:miRNA duplexes as an alternative feature. However, different independent evaluations reported conflicting results on the reliability of energy-based predictions. Here, we reassess the usefulness of energy features for mammalian target prediction, aiming to relax or eliminate the need for perfect seed matches and conservation requirement. METHODOLOGY/PRINCIPAL FINDINGS: We detect significant differences of energy features at experimentally supported human miRNA target sites and at genome-wide sites of AGO protein interaction. This trend is confirmed on datasets that assay the effect of miRNAs on mRNA and protein expression changes, and a simple linear regression model leads to significant correlation of predicted versus observed expression change. Compared to 6-mer seed matches as baseline, application of our energy-based model leads to ∼3-5-fold enrichment on highly down-regulated targets, and allows for prediction of strictly imperfect targets with enrichment above baseline. CONCLUSIONS/SIGNIFICANCE: In conclusion, our results indicate significant promise for energy-based miRNA target prediction that includes a broader range of targets without having to use conservation or impose stringent seed match rules

    Inferring MicroRNA Activities by Combining Gene Expression with MicroRNA Target Prediction

    Get PDF
    MicroRNAs (miRNAs) play crucial roles in a variety of biological processes via regulating expression of their target genes at the mRNA level. A number of computational approaches regarding miRNAs have been proposed, but most of them focus on miRNA gene finding or target predictions. Little computational work has been done to investigate the effective regulation of miRNAs.We propose a method to infer the effective regulatory activities of miRNAs by integrating microarray expression data with miRNA target predictions. The method is based on the idea that regulatory activity changes of miRNAs could be reflected by the expression changes of their target transcripts measured by microarray. To validate this method, we apply it to the microarray data sets that measure gene expression changes in cell lines after transfection or inhibition of several specific miRNAs. The results indicate that our method can detect activity enhancement of the transfected miRNAs as well as activity reduction of the inhibited miRNAs with high sensitivity and specificity. Furthermore, we show that our inference is robust with respect to false positives of target prediction.A huge amount of gene expression data sets are available in the literature, but miRNA regulation underlying these data sets is largely unknown. The method is easy to be implemented and can be used to investigate the miRNA effective regulation underlying the expression change profiles obtained from microarray experiments

    Polymerase II Promoter Strength Determines Efficacy of microRNA Adapted shRNAs

    Get PDF
    Since the discovery of RNAi and microRNAs more than 10 years ago, much research has focused on the development of systems that usurp microRNA pathways to downregulate gene expression in mammalian cells. One of these systems makes use of endogenous microRNA pri-cursors that are expressed from polymerase II promoters where the mature microRNA sequence is replaced by gene specific duplexes that guide RNAi (shRNA-miRs). Although shRNA-miRs are effective in directing target mRNA knockdown and hence reducing protein expression in many cell types, variability of RNAi efficacy in cell lines has been an issue. Here we show that the choice of the polymerase II promoter used to drive shRNA expression is of critical importance to allow effective mRNA target knockdown. We tested the abundance of shRNA-miRs expressed from five different polymerase II promoters in 6 human cell lines and measured their ability to drive target knockdown. We observed a clear positive correlation between promoter strength, siRNA expression levels, and protein target knockdown. Differences in RNAi from the shRNA-miRs expressed from the various promoters were particularly pronounced in immune cells. Our findings have direct implications for the design of shRNA-directed RNAi experiments and the preferred RNAi system to use for each cell type

    Toxicity in mice expressing short hairpin RNAs gives new insight into RNAi

    Get PDF
    Short hairpin RNAs can provide stable gene silencing via RNA interference. Recent studies have shown toxicity in vivo that appears to be related to saturation of the endogenous microRNA pathway. Will these findings limit the therapeutic use of such hairpins
    corecore