24 research outputs found

    An Analytical Pipeline for Quantitative Characterization of Dietary Intake:Application To Assess Grape Intake

    Get PDF
    Lack of accurate dietary assessment in free-living populations requires discovery of new biomarkers reflecting food intake qualitatively and quantitatively to objectively evaluate effects of diet on health. We provide a proof-of-principle for an analytical pipeline to identify quantitative dietary biomarkers. Tartaric acid was identified by nuclear magnetic resonance spectroscopy as a dose-responsive urinary biomarker of grape intake and subsequently quantified in volunteers following a series of 4-day dietary interventions incorporating 0 g/day, 50 g/day, 100 g/day, and 150 g/day of grapes in standardized diets from a randomized controlled clinical trial. Most accurate quantitative predictions of grape intake were obtained in 24 h urine samples which have the strongest linear relationship between grape intake and tartaric acid excretion (r<sup>2</sup> = 0.90). This new methodological pipeline for estimating nutritional intake based on coupling dietary intake information and quantified nutritional biomarkers was developed and validated in a controlled dietary intervention study, showing that this approach can improve the accuracy of estimating nutritional intakes

    Too Big to Fail — U.S. Banks’ Regulatory Alchemy: Converting an Obscure Agency Footnote into an “At Will” Nullification of Dodd-Frank’s Regulation of the Multi-Trillion Dollar Financial Swaps Market

    Get PDF
    The multi-trillion-dollar market for, what was at that time wholly unregulated, over-the-counter derivatives (“swaps”) is widely viewed as a principal cause of the 2008 worldwide financial meltdown. The Dodd-Frank Act, signed into law on July 21, 2010, was expressly considered by Congress to be a remedy for this troublesome deregulatory problem. The legislation required the swaps market to comply with a host of business conduct and anti-competitive protections, including that the swaps market be fully transparent to U.S. financial regulators, collateralized, and capitalized. The statute also expressly provides that it would cover foreign subsidiaries of big U.S. financial institutions if their swaps trading could adversely impact the U.S. economy or represent the use of extraterritorial trades as an attempt to “evade” Dodd-Frank. In July 2013, the CFTC promulgated an 80-page, triple-columned, and single-spaced “guidance” implementing Dodd-Frank’s extraterritorial reach, i.e., that manner in which Dodd-Frank would apply to swaps transactions executed outside the United States. The key point of that guidance was that swaps trading within the “guaranteed” foreign subsidiaries of U.S. bank holding company swaps dealers were subject to all of Dodd-Frank’s swaps regulations wherever in the world those subsidiaries’ swaps were executed. At that time, the standardized industry swaps agreement contemplated that, inter alia, U.S. bank holding company swaps dealers’ foreign subsidiaries would be “guaranteed” by their corporate parent, as was true since 1992. In August 2013, without notifying the CFTC, the principal U.S. bank holding company swaps dealer trade association privately circulated to its members standard contractual language that would, for the first time, “deguarantee” their foreign subsidiaries. By relying only on the obscure footnote 563 of the CFTC guidance’s 662 footnotes, the trade association assured its swaps dealer members that the newly deguaranteed foreign subsidiaries could (if they so chose) no longer be subject to Dodd-Frank. As a result, it has been reported (and it also has been understood by many experts within the swaps industry) that a substantial portion of the U.S. swaps market has shifted from the large U.S. bank holding companies swaps dealers and their U.S. affiliates to their newly deguaranteed “foreign” subsidiaries, with the attendant claim by these huge big U.S. bank swaps dealers that Dodd-Frank swaps regulation would not apply to these transactions. The CFTC also soon discovered that these huge U.S. bank holding company swaps dealers were “arranging, negotiating, and executing” (“ANE”) these swaps in the United States with U.S. bank personnel and, only after execution in the U.S., were these swaps formally “assigned” to the U.S. banks’ newly “deguaranteed” foreign subsidiaries with the accompanying claim that these swaps, even though executed in the U.S., were not covered by Dodd-Frank. In October 2016, the CFTC proposed a rule that would have closed the “deguarantee” and “ANE” loopholes completely. However, because it usually takes at least a year to finalize a “proposed” rule, this proposed rule closing the loopholes in question was not finalized prior to the inauguration of President Trump. All indications are that it will never be finalized during a Trump Administration. Thus, in the shadow of the recent tenth anniversary of the Lehman failure, there is an understanding among many market regulators and swaps trading experts that large portions of the swaps market have moved from U.S. bank holding company swaps dealers and their U.S. affiliates to their newly deguaranteed foreign affiliates where Dodd- Frank swaps regulation is not being followed. However, what has not moved abroad is the very real obligation of the lender of last resort to rescue these U.S. swaps dealer bank holding companies if they fail because of poorly regulated swaps in their deguaranteed foreign subsidiaries, i.e., the U.S. taxpayer. While relief is unlikely to be forthcoming from the Trump Administration or the Republican-controlled Senate, some other means will have to be found to avert another multi-trillion-dollar bank bailout and/or a financial calamity caused by poorly regulated swaps on the books of big U.S. banks. This paper notes that the relevant statutory framework affords state attorneys general and state financial regulators the right to bring so-called “parens patriae” actions in federal district court to enforce, inter alia, Dodd- Frank on behalf of a state’s citizens. That kind of litigation to enforce the statute’s extraterritorial provisions is now badly needed

    Increased Risk of Non-Fatal Myocardial Infarction Following Testosterone Therapy Prescription in Men

    Get PDF
    <div><p>Background</p><p>An association between testosterone therapy (TT) and cardiovascular disease has been reported and TT use is increasing rapidly.</p><p>Methods</p><p>We conducted a cohort study of the risk of acute non-fatal myocardial infarction (MI) following an initial TT prescription (N = 55,593) in a large health-care database. We compared the incidence rate of MI in the 90 days following the initial prescription (post-prescription interval) with the rate in the one year prior to the initial prescription (pre-prescription interval) (post/pre). We also compared post/pre rates in a cohort of men prescribed phosphodiesterase type 5 inhibitors (PDE5I; sildenafil or tadalafil, N = 167,279), and compared TT prescription post/pre rates with the PDE5I post/pre rates, adjusting for potential confounders using doubly robust estimation.</p><p>Results</p><p>In all subjects, the post/pre-prescription rate ratio (RR) for TT prescription was 1.36 (1.03, 1.81). In men aged 65 years and older, the RR was 2.19 (1.27, 3.77) for TT prescription and 1.15 (0.83, 1.59) for PDE5I, and the ratio of the rate ratios (RRR) for TT prescription relative to PDE5I was 1.90 (1.04, 3.49). The RR for TT prescription increased with age from 0.95 (0.54, 1.67) for men under age 55 years to 3.43 (1.54, 7.56) for those aged ≥75 years (p<sub>trend</sub> = 0.03), while no trend was seen for PDE5I (p<sub>trend</sub> = 0.18). In men under age 65 years, excess risk was confined to those with a prior history of heart disease, with RRs of 2.90 (1.49, 5.62) for TT prescription and 1.40 (0.91, 2.14) for PDE5I, and a RRR of 2.07 (1.05, 4.11).</p><p>Discussion</p><p>In older men, and in younger men with pre-existing diagnosed heart disease, the risk of MI following initiation of TT prescription is substantially increased.</p></div

    Rates of myocardial infarction per 1,000 persons per year (PY) in men under age 65 years and those age 65 years and older, in pre- and post-prescription intervals for an initial prescription for PDE5I with adjusted<sup>*</sup> rate ratios (RR), and 95% confidence intervals (CI).

    No full text
    *<p>Adjusted for age and pre-existing medical conditions and medication use associated with MI or its risk factors (<a href="http://www.plosone.org/article/info:doi/10.1371/journal.pone.0085805#pone-0085805-t001" target="_blank">Table 1</a> and Supplemental Tables).</p>†<p>Effective sample sizes of PDE5I cohorts after weighting:</p><p>All Ages: 141,671.</p><p>Age <65: Years 121,696.</p><p>Age ≥65: Years 19,505.</p

    Distribution of baseline covariates for all Medicare and commercial insurance enrollees in the TT prescription and PDE5I cohorts before and after weighting.

    No full text
    <p>The TT prescription patients were unweighted and the PDE5I patients were weighted to match the TT prescription cohort based on odds of TT prescription.</p><p>These descriptive tabulations are restricted to exposures that occur in at least 2% or more of individuals. Please see the <a href="http://www.plosone.org/article/info:doi/10.1371/journal.pone.0085805#pone.0085805.s001" target="_blank">Tables S1</a> and <a href="http://www.plosone.org/article/info:doi/10.1371/journal.pone.0085805#pone.0085805.s002" target="_blank">S2</a> for a full list.</p

    Rates of myocardial infarction in men under and 65 and those 65 and older per 1,000(PY) in pre- and post-prescription intervals for an initial prescription for TT or PDE5 inhibitors, with adjusted<sup>*</sup> rate ratios (RR), ratio of rate ratios (RRR) and 95% confidence limits (CL) by history of heart disease.

    No full text
    *<p>Adjusted for age and pre-existing medical conditions and medication use associated with MI or its risk factors.</p>†<p>Effective sample size of PDE5 inhibitor cohort after weighting.</p><p>Under 65 with heart disease history: 9,003.</p><p>Under 65 without a history of heart disease: 112,588.</p><p>65 and older with heart disease history: 4,190.</p><p>65 and older without a history of heart disease: 15,718.</p>‡<p>RRR = RR TT cohort/RR PDE5I cohort.</p
    corecore