159 research outputs found

    CBS domains form energy-sensing modules whose binding of adenosine ligands is disrupted by disease mutations

    Get PDF
    CBS domains are defined as sequence motifs that occur in several different proteins in all kingdoms of life. Although thought to be regulatory, their exact functions have been unknown. However, their importance was underlined by findings that mutations in conserved residues within them cause a variety of human hereditary diseases, including (with the gene mutated in parentheses): Wolff-Parkinson-White syndrome (Îł2 subunit of AMP-activated protein kinase); retinitis pigmentosa (IMP dehydrogenase-1); congenital myotonia, idiopathic generalized epilepsy, hypercalciuric nephrolithiasis, and classic Bartter syndrome (CLC chloride channel family members); and homocystinuria (cystathionine ÎČ-synthase). AMP-activated protein kinase is a sensor of cellular energy status that is activated by AMP and inhibited by ATP, but the location of the regulatory nucleotide-binding sites (which are prime targets for drugs to treat obesity and diabetes) was not characterized. We now show that tandem pairs of CBS domains from AMP-activated protein kinase, IMP dehydrogenase-2, the chloride channel CLC2, and cystathionine ÎČ-synthase bind AMP, ATP, or S-adenosyl methionine,while mutations that cause hereditary diseases impair this binding. This shows that tandem pairs of CBS domains act, in most cases, as sensors of cellular energy status and, as such, represent a newly identified class of binding domain for adenosine derivatives

    High-Resolution Image Reconstruction from a Sequence of Rotated and Translated Frames and its Application to an Infrared Imaging System

    Get PDF
    Some imaging systems employ detector arrays that are not sufficiently dense to meet the Nyquist criterion during image acquisition. This is particularly true for many staring infrared imagers. Thus, the full resolution afforded by the optics is not being realized in such a system. This paper presents a technique for estimating a high-resolution image, with reduced aliasing, from a sequence of undersampled rotated and translationally shifted frames. Such an image sequence can be obtained if an imager is mounted on a moving platform, such as an aircraft. Several approaches to this type of problem have been proposed in the literature. Here we extend some of this previous work. In particular, we define an observation model that incorporates knowledge of the optical system and detector array. The high-resolution image estimate is formed by minimizing a regularized cost function based on the observation model. We show that with the proper choice of a tuning parameter, our algorithm exhibits robustness in the presence of noise. We consider both gradient descent and conjugate-gradient optimization procedures to minimize the cost function. Detailed experimental results are provided to illustrate the performance of the proposed algorithm using digital video from an infrared imager

    The microbiology of rebuilding soils with water treatment residual co‐amendments: Risks and benefits

    Get PDF
    Water treatment residuals (WTR) are sludges from the potable water treatment process, currently largely destined for landfill. This waste can be diverted to rebuild degraded soils, aligning with the UN's Sustainable Development Goals 12 (Consumption and Production) and 15 (Terrestrial Ecosystems). Biosolids are tested against stringent pathogen guidelines, yet few studies have explored the microbial risk of WTR land application, despite anthropogenic impacts on water treatment. Here, the microbial risks and benefits of amending nutrient-poor sandy soil with WTR were explored. It was shown that the culturable pathogen load of wet and dry WTR did not warrant pre-processing before land application, according to South African national quality guidelines, with fecal coliforms not exceeding 104 CFU/gdw in wet sludges sampled from four South African and Zimbabwean water treatment plants, and decreasing upon drying and processing. There was no culturable pathogenic (fecal coliforms, enterococci, Salmonella and Shigella) regrowth in soil incubations amended with dry WTR. However, the competition (microbial load and diversity) introduced by a WTR co-amendment did not limit pathogen survival in soils amended with biosolids. The application of WTR to nutrient-poor sandy soils for wheat (Triticum aestivum L.) growth improved the prokaryotic and eukaryotic culturable cell concentrations, similar to compost. However, the compost microbiome more significantly impacted the bacterial beta diversity of the receiving soil than WTR, analyzed with ARISA. Thus, although there was a low pathogen risk for WTR-amendment in receiving soils, and total soil microbial loads were increased, microbial diversity was more significantly enhanced by compost than WTR

    Extent of soil acidity in no-tillage systems in the Western Cape Province of South Africa

    Get PDF
    CITATION: Liebenberg, A., et al. 2020. Extent of soil acidity in no-tillage systems in the Western Cape Province of South Africa. Land, 9(10):361, doi:10.3390/land9100361.The original publication is available at https://www.mdpi.comPublication of this article was funded by the Stellenbosch University Open Access FundRoughly 90% of farmers in the Western Cape Province of South Africa have converted to no-tillage systems to improve the efficiency of crop production. Implementation of no-tillage restricts the mixing of soil amendments, such as limestone, into soil. Stratification of nutrients and pH is expected. A soil survey was conducted to determine the extent and geographical spread of acid soils and pH stratification throughout the Western Cape. Soil samples (n = 653) were taken at three depths (0–5, 5–15, 15–30 cm) from no-tillage fields. Differential responses (p ≀ 0.05) between the two regions (Swartland and southern Cape), as well as soil depth, and annual rainfall influenced (p ≀ 0.05) exchangeable acidity, Ca and Mg, pH(KCl), and acid saturation. A large portion (19.3%) of soils (specifically in the Swartland region) had at least one depth increment with pH(KCl) ≀ 5.0, which is suboptimal for wheat (Triticum aestivum), barley (Hordeum vulgare), and canola (Brassica napus). Acid saturation in the 5–15 cm depth increment in the Swartland was above the 8% threshold for production of most crops. Acid soils are a significant threat to crop production in the region and needs tactical agronomic intervention (e.g. strategic tillage) to ensure sustainability.https://www.mdpi.com/2073-445X/9/10/361Publisher's versio

    Role of metabolically active hormones in the insulin resistance associated with short-term glucocorticoid treatment

    Get PDF
    BACKGROUND: The mechanisms by which glucocorticoid therapy promotes obesity and insulin resistance are incompletely characterized. Modulations of the metabolically active hormones, tumour necrosis factor alpha (TNF alpha), ghrelin, leptin and adiponectin are all implicated in the development of these cardiovascular risk factors. Little is known about the effects of short-term glucocorticoid treatment on levels of these hormones. RESEARCH METHODS AND PROCEDURES: Using a blinded, placebo-controlled approach, we randomised 25 healthy men (mean (SD) age: 24.2 (5.4) years) to 5 days of treatment with either placebo or oral dexamethasone 3 mg twice daily. Fasting plasma TNFα, ghrelin, leptin and adiponectin were measured before and after treatment. RESULTS: Mean changes in all hormones were no different between treatment arms, despite dexamethasone-related increases in body weight, blood pressure, HDL cholesterol and insulin. Changes in calculated indices of insulin sensitivity (HOMA-S, insulin sensitivity index) were strongly related to dexamethasone treatment (p < 0.001). DISCUSSION: Our data do not support a role for TNF alpha, ghrelin, leptin or adiponectin in the insulin resistance associated with short-term glucocorticoid treatment

    Crop Updates 2001 - Oilseeds

    Get PDF
    ABSTRACT This session covers twenty five papers from different authors: FORWARD, Mervyn McDougall, CHAIRMAN, PULSES AND OILSEEDS PARTNERSHIP GROUP PLENARY 1. Implications of the ‘green-bridge’ for viral and fungal disease carry-over between seasons, Debbie Thackray, Agriculture Western Australia and Centre for Legumes in Mediterranean Agriculture 2. Insect pest development in WA via the ‘green-bridge’, Kevin Walden, Agriculture Western Australia VARIETIES 3. Performance of new canola varieties in AGWEST variety trials, G. Walton, Crop Improvement Institute, Agriculture Western Australia 4. New herbicide tolerant varieties in WA, Kevin Morthorpe, Stephen Addenbrooke, Pioneer Hi-Bred Australia P/L 5. IT v’s TT – Head to head, Paul Carmody, Centre for Cropping Systems, Agriculture Western Australia ESTABLISHMENT 6. Effect of stubble, seeding technique and seed size on crop establishment and yield of canola, Rafiul Alam, Glen Riethmuller and Greg Hamilton, Agriculture Western Australia 7. Canola establishment survey 2000, Rafiul Alam, Paul Carmody, Greg Hamilton and Adrian Cox, Agriculture Western Australia 8. Tramline farming for more canola, Paul Blackwell, Agriculture Western Australia NUTRITION 9. Comparing the phosphorus requirement of canola and wheat in WA, M.D.A. Bolland and M.J. Baker, Agriculture Western Australia 10. Will a rainy summer affect nitrogen requirement: Tailoring your fertiliser decisions using the new nitrogen calculator, A.J. Diggle, Agriculture Western Australia 11. Canola – More response to lime, Chris Gazeyand Paul Carmody, Centre for Cropping Systems, Agriculture Western Australia AGRONOMY 12. Hormone manipulation of canola development, Paul Carmody and Graham Walton, Agriculture Western Australia 13. Yield penalties with delayed sewing of canola, Imma Farre, CSIRO Plant Industry, Michael J. Robertson, CSIRO Sustainable Ecosystems, Graham H. Walton, Agriculture Western Australia, Senthold Asseng, CSIRO Plant Industry 14. Dry matter and oil accumulation in developing seeds of canola varieties at different sowing dates, Ping Si1, David Turner1 and David Harris2 , 1Plant Sciences, Faculty of Agriculture, The University of Western Australia, 2Chemistry Centre of Western Australia 13. Simulating oil concentrations in canola – virtually just the beginning, David Turner1 and Imma FarrĂ©2, 1Plant Sciences, Faculty of Agriculture, The University of Western Australia, 2CSIRO Plant Industry, Centre for Mediterranean Agricultural Research PESTS AND DISEASES 14. Further evidence that canola crops are resilient to damage by aphids, Françoise Berlandier and Christiaan Valentine, Entomology, Agriculture Western Australia 15. Management of Diamondback moth (DBM) in canola, David Cook, Peter Mangano, David Cousins, Françoise Berlandier, and Darryl Hardie, Crop Improvement Institute,Agriculture Western Australia 16. Effect of time of sowing in conjunction with fungicides on blackleg and yield of canola, Ravjit Khangura and Martin Barbetti, Agriculture Western Australia 17. Further developments in forecasting aphid and virus risk in canola, Debbie Thackray, Jenny Hawkes and Roger Jones, Agriculture Western Australia and Centre for Legumes in Mediterranean Agriculture 18. Efficiency of selected insecticides for the use on Diamondback Moth in canola, Kevin Walden, Agriculture Western Australia 19. ImpactÂź applied ‘in furrow’ controls blackleg in canola, Cameron Weeks and Erin Hasson, Mingenew-Irwin Group Inc. 20. Effect of time of sowing and ImpactÂź on canola yield, Esperance, Dave Eksteen, Agriculture Western Australia 21. Australian Plague Locust Campaign 2000, Kevin Walden, Agriculture Western Australia WEED CONTROL 22. New herbicide options for canola, John Moore and Paul Matson, Agriculture Western Australia HARVESTING 23. Effects of time of swathing and desiccant application on the seed yield and oil content of canola, Carla Thomas and Lionel Martin, Muresk Institute of Agriculture, Curtin University of Technology DECISION SUPPORT AND ADOPTION 24. Using canola monitoring groups to understand factors affecting canola production in Esperance, Dave Eksteen, Agriculture Western Australia 25. Nitrogen and canola, Dave Eksteen, Agriculture Western Australi

    Germline variation in inflammation-related pathways and risk of Barrett's oesophagus and oesophageal adenocarcinoma

    Get PDF
    Esophageal adenocarcinoma (EA) incidence has risen sharply in Western countries over recent decades. Local and systemic inflammation, operating downstream of disease-associated exposures, is considered an important contributor to EA pathogenesis. Several risk factors have been identified for EA and its precursor, Barrett’s esophagus (BE), including symptomatic reflux, obesity, and smoking. The role of inherited genetic susceptibility remains an area of active investigation. To explore whether germline variation related to inflammatory processes influences susceptibility to BE/EA, we used data from a genome-wide association study (GWAS) of 2,515 EA cases, 3,295 BE cases, and 3,207 controls. Our analysis included 7,863 single nucleotide polymorphisms (SNPs) in 449 genes assigned to five pathways: cyclooxygenase (COX), cytokine signaling, oxidative stress, human leukocyte antigen, and NFÎșB. A principal components-based analytic framework was employed to evaluate pathway-level and gene-level associations with disease risk. We identified a significant signal for the COX pathway in relation to BE risk (P=0.0059, FDR q=0.03), and in gene-level analyses found an association with MGST1 (microsomal glutathione-S-transferase 1; P=0.0005, q=0.005). Assessment of 36 MGST1 SNPs identified 14 variants associated with elevated BE risk (q<0.05). Of these, four were subsequently confirmed (P<5.5 × 10−5) in a meta-analysis encompassing an independent set of 1,851 BE cases and 3,496 controls. Three of these SNPs (rs3852575, rs73112090, rs4149204) were associated with similar elevations in EA risk. This study provides the most comprehensive evaluation of inflammation-related germline variation in relation to risk of BE/EA, and suggests that variants in MGST1 influence disease susceptibility

    Loneliness and Social Internet Use: Pathways to Reconnection in a Digital World?

    Get PDF
    With the rise of online social networking, social relationships are increasingly developed and maintained in a digital domain. Drawing conclusions about the impact of the digital world on loneliness is difficult because there are contradictory findings, and cross-sectional studies dominate the literature, making causation difficult to establish. In this review, we present our theoretical model and propose that there is a bidirectional and dynamic relationship between loneliness and social Internet use. When the Internet is used as a way station on the route to enhancing existing relationships and forging new social connections, it is a useful tool for reducing loneliness. But when social technologies are used to escape the social world and withdraw from the “social pain” of interaction, feelings of loneliness are increased. We propose that loneliness is also a determinant of how people interact with the digital world. Lonely people express a preference for using the Internet for social interaction and are more likely to use the Internet in a way that displaces time spent in offline social activities. This suggests that lonely people may need support with their social Internet use so that they employ it in a way that enhances existing friendships and/or to forge new ones

    Glucocorticoids promote structural and functional maturation of foetal cardiomyocytes: a role for PGC-1α

    Get PDF
    Glucocorticoid levels rise dramatically in late gestation to mature foetal organs in readiness for postnatal life. Immature heart function may compromise survival. Cardiomyocyte glucocorticoid receptor (GR) is required for the structural and functional maturation of the foetal heart in vivo, yet the molecular mechanisms are largely unknown. Here we asked if GR activation in foetal cardiomyocytes in vitro elicits similar maturational changes. We show that physiologically relevant glucocorticoid levels improve contractility of primary-mouse-foetal cardiomyocytes, promote Z-disc assembly and the appearance of mature myofibrils, and increase mitochondrial activity. Genes induced in vitro mimic those induced in vivo and include PGC-1α, a critical regulator of cardiac mitochondrial capacity. SiRNA-mediated abrogation of the glucocorticoid induction of PGC-1α in vitro abolished the effect of glucocorticoid on myofibril structure and mitochondrial oxygen consumption. Using RNA sequencing we identified a number of transcriptional regulators, including PGC-1α, induced as primary targets of GR in foetal cardiomyocytes. These data demonstrate that PGC-1α is a key mediator of glucocorticoid-induced maturation of foetal cardiomyocyte structure and identify other candidate transcriptional regulators that may play critical roles in the transition of the foetal to neonatal heart
    • 

    corecore