312 research outputs found

    Improving supplementary feeding in species conservation

    Get PDF
    Supplementary feeding is often a knee-jerk reaction to population declines, and its application is not critically evaluated, leading to polarized views among managers on its usefulness. Here, we advocate a more strategic approach to supplementary feeding so that the choice to use it is clearly justified over, or in combination with, other management actions and the predicted consequences are then critically assessed following implementation. We propose combining methods from a set of specialist disciplines that will allow critical evaluation of the need, benefit, and risks of food supplementation. Through the use of nutritional ecology, population ecology, and structured decision making, conservation managers can make better choices about what and how to feed by estimating consequences on population recovery across a range of possible actions. This structured approach also informs targeted monitoring and more clearly allows supplementary feeding to be integrated in recovery plans and reduces the risk of inefficient decisions. In New Zealand, managers of the endangered Hihi (Notiomystis cincta) often rely on supplementary feeding to support reintroduced populations. On Kapiti island the reintroduced Hihi population has responded well to food supplementation, but the logistics of providing an increasing demand recently outstretched management capacity. To decide whether and how the feeding regime should be revised, managers used a structured decision making approach informed by population responses to alternative feeding regimes. The decision was made to reduce the spatial distribution of feeders and invest saved time in increasing volume of food delivered into a smaller core area. The approach used allowed a transparent and defendable management decision in regard to supplementary feeding, reflecting the multiple objectives of managers and their priorities

    Body size changes in passerine birds introduced to New Zealand from the UK

    Get PDF
    One feature of global geographic variation in avian body sizes is that they are larger on isolated islands than on continental regions. Therefore, this study aims to assess whether there have been changes in body size following successful establishment for seven passerine bird species (blackbird Turdus merula, song thrush T. philomelos, house sparrow Passer domesticus, chaffinch Fringilla coelebs, greenfinch Chloris chloris, goldfinch Carduelis carduelis, yellowhammer Emberiza citrinella) introduced from the continental islands of the UK to the more isolated oceanic landmass of New Zealand in the middle of the nineteenth century. Measures of tarsus length were taken from individuals from contemporary UK and New Zealand populations of these species, and from historical specimens collected around the time that individuals were translocated from the UK to New Zealand. Analysis of Variance was used to test for size differences between contemporary UK and New Zealand populations, and between historical UK and contemporary UK and New Zealand populations. Historical UK populations have longer tarsi, on average, than 12 (7 UK and 5 New Zealand) of the 14 contemporary populations. Significant decreases in tarsus length relative to the historical populations have occurred in the UK for blackbird, chaffinch and greenfinch, and in the New Zealand blackbird population. Contemporary New Zealand house sparrows have significantly longer tarsi, on average, than both historical and contemporary UK populations. Exposure to novel environments may be expected to lead to changes in the morphology and other traits of exotic species, but changes have also occurred in the native range. In fact, contrary to expectations, the most common differences we found were between contemporary and historical UK populations. Consideration of contemporary populations alone would underestimate the true scale of morphological change in these species over time, which may be due to phenotypic plasticity or genetic adaptation to environmental changes experienced by all populations in the last 150 years

    Enhancing dietary specialization metrics in observational studies of wild animal populations

    Get PDF
    Studies of intraspecific dietary variation can greatly enrich our view of a species' niche and role in the ecosystem, particularly when species with broad diets are found to be composed of generalist and specialist individuals. However, the current framework for quantifying dietary specialization leaves certain standards unformalized and is susceptible to overestimating specialization when there are few repeated observations per individual, as is often the case in observational studies of wild populations. Here, we use the hihi (Notiomystis cincta), a threatened New Zealand passerine, as a case study for demonstrating how existing statistical tools can be applied to strengthen the dietary specialization framework. First, we assess whether the reliability of common dietary measures can be improved through Bayesian adjustments and by using rarefaction to compare uncertainty levels of metrics calculated from different sample sizes. As diet links closely to environmental factors, we also demonstrate how adding phenological data and habitat assessments to standard protocols can help validate our dietary measures as evidence for resource selection rather than random foraging. Finally, in light of our finding that diet predicts survival in hihi, we discuss the utility of dietary specialization for elucidating broader behavioral syndromes.Peer reviewe

    Foraging behaviour alters with social environment in a juvenile songbird

    Get PDF
    Early independence from parents is a critical period where social information acquired vertically may become outdated, or conflict with new information. However, across natural populations, it is unclear if newly independent young persist in using information from parents, or if group-level effects of conformity override previous behaviours. Here, we test if wild juvenile hihi (Notiomystis cincta, a New Zealand passerine) retain a foraging behaviour from parents, or if they change in response to the behaviour of peers. We provided feeding stations to parents during chick-rearing to seed alternative access routes, and then tracked their offspring's behaviour. Once independent, juveniles formed mixed-treatment social groups, where they did not retain preferences from their time with parents. Instead, juvenile groups converged over time to use one access route­ per group, and juveniles that moved between groups switched to copy the locally favoured option. Juvenile hihi did not copy specific individuals, even if they were more familiar with the preceding bird. Our study shows that early social experiences with parents affect initial foraging decisions, but social environments encountered later on can update transmission of arbitrary behaviours. This suggests that conformity may be widespread in animal groups, with potential cultural, ecological and evolutionary consequences.Peer reviewe

    Do mothers bias offspring sex ratios in carotenoid-rich environments?

    Get PDF
    If environmental or maternal factors favor the fitness of one sex over the other, theory predicts that mothers should produce more offspring of the sex most likely to benefit from prevailing conditions. For species where males depend on carotenoid-based colorful ornaments to secure territory or attract mates, carotenoid availability in the environment could be one such component: mothers experiencing high availability of carotenoids should produce more sons. Here, we test this hypothesis by providing carotenoids to a wild population of a sexually dimorphic passerine, the hihi (stitch bird: Notiomystis cincta). Access to carotenoids during early life influences the color of male hihi plumage, which improves territory acquisition as adults. Therefore, carotenoid availability when young may influence male fitness. However, we found no evidence of sex ratio bias in treated or untreated groups, either before or after hatching. First-laid eggs, where carotenoid concentrations are usually highest, were also unbiased. For hihi, access to carotenoids during egg laying does not appear to encourage mothers to alter sex ratios of offspring. Alternatively, the fitness of daughters may also benefit from increased carotenoids during development. Disentangling these alternatives requires further work

    Early-life telomere length predicts life-history strategy and reproductive senescence in a threatened wild songbird

    Get PDF
    Telomeres are well known for their associations with lifespan and ageing across diverse taxa. Early-life telomere length can be influenced by developmental conditions and has been shown positively affect lifetime reproductive success in a limited number of studies. Whether these effects are caused by a change in lifespan, reproductive rate or perhaps most importantly reproductive senescence is unclear. Using long-term data on female breeding success from a threatened songbird (the hihi, Notiomystis cincta), we show that the early-life telomere length of individuals predicts the presence and rate of future senescence of key reproductive traits: clutch size and hatching success. In contrast, senescence of fledging success is not associated with early-life telomere length, which may be due to the added influence of biparental care at this stage. Early-life telomere length does not predict lifespan or lifetime reproductive success in this species. Females may therefore change their reproductive allocation strategy depending on their early developmental conditions, which we hypothesise are reflected in their early-life telomere length. Our results offer new insights on the role that telomeres play in reproductive senescence and individual fitness and suggest telomere length can be used as a predictor for future life history in threatened species

    Analysing age structure, residency and relatedness uncovers social network structure in aggregations of young birds

    Get PDF
    Animal sociality arises from the cumulative effects of both individual social decisions and environmental factors. While juveniles' social interactions with parents prior to independence shape later life sociality, in most bird and mammal species at least one sex undergoes an early life dispersal before first-year reproduction. The social associations from this period could also have implications for later life yet are rarely characterized. Here, we derived predictions from available examples of juvenile groups in the literature (mobile 'flocks', spatially stable 'gangs' or adult-associated 'creches') and then used three cohorts of juvenile hihi, Notiomystis cincta, a threatened New Zealand passerine, to demonstrate how multistate modelling and social network analysis approaches can be used to characterize group type based on residency, movement, relatedness and social associations. At sites where hihi congregated, we found that juveniles were resighted at a higher frequency than adults and associated predominantly with unrelated juveniles rather than siblings or parents. Movement between group sites occurred, but associations developed predominantly within the sites. We suggest therefore that juvenile hihi social structure is most similar to a 'gang', a group structure in which juveniles congregate without adults at predictable sites. Such gangs have previously only been described formally in ravens, Corvus corax. By combining spatial and social network analyses, our study demonstrates how social group structures can be described and therefore facilitate broader comparisons and discussion about the form and function of juvenile groups across taxa. (C) 2020 The Association for the Study of Animal Behaviour. Published by Elsevier Ltd. All rights reserved.Peer reviewe

    Evaluating the success of functional restoration after reintroduction of a lost avian pollinator

    Get PDF
    Conservation translocation is a common method for species recovery, for which one increasingly frequent objective is restoring lost ecological functions to promote ecosystem recovery. However, few conservation translocation programs explicitly state or monitor function as an objective, limiting the ability to test assumptions, learn from past efforts, and improve management. We evaluated whether translocations of hihi (Notiomystis cincta), a threatened New Zealand passerine, achieved their implicit objective of restoring lost pollination function. Through a pollinator-exclusion experiment, we quantified, with log response ratios (lnR), the effects of birds on fruit set and seed quality in hangehange (Geniostoma ligustrifolium), a native flowering shrub. We isolated the contributions of hihi by making comparisons across sites with and without hihi. Birds improved fruit set more at sites without hihi (lnR = 1.27) than sites with hihi (lnR = 0.50), suggesting other avian pollinators compensated for and even exceeded hihi contributions to fruit set. Although birds improved seed germination only at hihi sites (lnR = 0.22-0.41), plants at sites without hihi had germination rates similar to hihi sites because they produced 26% more filled seeds, regardless of pollination condition. Therefore, although our results showed hihi improved seed quality, they also highlighted the complexity of ecological functions. When an important species is lost, ecosystems may be able to achieve similar function through different means. Our results underscore the importance of stating and monitoring the ecological benefits of conservation translocations when functional restoration is a motivation to ensure these programs are achieving their objectives.Peer reviewe

    Analysing age structure, residency and relatedness uncovers social network structure in aggregations of young birds

    Get PDF
    Animal sociality arises from the cumulative effects of both individual social decisions and environmental factors. While juveniles' social interactions with parents prior to independence shape later life sociality, in most bird and mammal species at least one sex undergoes an early life dispersal before first-year reproduction. The social associations from this period could also have implications for later life yet are rarely characterized. Here, we derived predictions from available examples of juvenile groups in the literature (mobile 'flocks', spatially stable 'gangs' or adult-associated 'creches') and then used three cohorts of juvenile hihi, Notiomystis cincta, a threatened New Zealand passerine, to demonstrate how multistate modelling and social network analysis approaches can be used to characterize group type based on residency, movement, relatedness and social associations. At sites where hihi congregated, we found that juveniles were resighted at a higher frequency than adults and associated predominantly with unrelated juveniles rather than siblings or parents. Movement between group sites occurred, but associations developed predominantly within the sites. We suggest therefore that juvenile hihi social structure is most similar to a 'gang', a group structure in which juveniles congregate without adults at predictable sites. Such gangs have previously only been described formally in ravens, Corvus corax. By combining spatial and social network analyses, our study demonstrates how social group structures can be described and therefore facilitate broader comparisons and discussion about the form and function of juvenile groups across taxa. (C) 2020 The Association for the Study of Animal Behaviour. Published by Elsevier Ltd. All rights reserved.Peer reviewe
    corecore