72 research outputs found

    De Novo ZMYND8 variants result in an autosomal dominant neurodevelopmental disorder with cardiac malformations

    Get PDF
    Purpose: ZMYND8 encodes a multidomain protein that serves as a central interactive hub for coordinating critical roles in transcription regulation, chromatin remodeling, regulation of superenhancers, DNA damage response and tumor suppression. We delineate a novel neurocognitive disorder caused by variants in the ZMYND8 gene. Methods: An international collaboration, exome sequencing, molecular modeling, yeast twohybrid assays, analysis of available transcriptomic data and a knockdown Drosophila model were used to characterize the ZMYND8 variants. Results: ZMYND8 variants were identified in 11 unrelated individuals; 10 occurred de novo and one suspected de novo; 2 were truncating, 9 were missense, of which one was recurrent. The disorder is characterized by intellectual disability with variable cardiovascular, ophthalmologic and minor skeletal anomalies. Missense variants in the PWWP domain of ZMYND8 abolish the interaction with Drebrin and missense variants in the MYND domain disrupt the interaction with GATAD2A. ZMYND8 is broadly expressed across cell types in all brain regions and shows highest expression in the early stages of brain development. Neuronal knockdown of the Drosophila ZMYND8 ortholog results in decreased habituation learning, consistent with a role in cognitive function. Conclusion: We present genomic and functional evidence for disruption of ZMYND8 as a novel etiology of syndromic intellectual disability

    The ATLAS inner detector trigger performance in pp collisions at 13 TeV during LHC Run 2

    Get PDF
    The design and performance of the inner detector trigger for the high level trigger of the ATLAS experiment at the Large Hadron Collider during the 2016-18 data taking period is discussed. In 2016, 2017, and 2018 the ATLAS detector recorded 35.6 fb1^{-1}, 46.9 fb1^{-1}, and 60.6 fb1^{-1} respectively of proton-proton collision data at a centre-of-mass energy of 13 TeV. In order to deal with the very high interaction multiplicities per bunch crossing expected with the 13 TeV collisions the inner detector trigger was redesigned during the long shutdown of the Large Hadron Collider from 2013 until 2015. An overview of these developments is provided and the performance of the tracking in the trigger for the muon, electron, tau and bb-jet signatures is discussed. The high performance of the inner detector trigger with these extreme interaction multiplicities demonstrates how the inner detector tracking continues to lie at the heart of the trigger performance and is essential in enabling the ATLAS physics programme

    History of narcolepsy at Stanford University

    Get PDF

    Magnetic susceptibility imaging of human habenula at 3 T

    No full text
    The habenula plays an important role in brain reward circuitry and psychiatric conditions. While much work has been done on the function and structure of the habenula in animal models, in vivo imaging studies of the human habenula have been relatively scarce due to its small size, deep brain location, and lack of clear biomarkers for its heterogeneous substructure. In this paper, we report high-resolution (0.5x0.5x0.8 mm(3)) MRI of the human habenula with quantitative susceptibility mapping (QSM) at 3 T. By analyzing 48 scan datasets collected from 21 healthy subjects, we found that magnetic susceptibility contrast is highly non-uniform within the habenula and across the subjects. In particular, we observed high prevalence of elevated susceptibility in the posterior subregion of the habenula. Correlation analysis between the susceptibility and the effective transverse relaxation rate (R2*) indicated that localized susceptibility enhancement in the habenula is more associated with increased paramagnetic (such as iron) rather than decreased diamagnetic (such as myelin) sources. Our results suggest that high-resolution QSM could make a potentially useful tool for substructure-resolved in vivo habenula imaging, and provide a groundwork for the future development of magnetic susceptibility as a quantitative biomarker for human habenula studies.11sciescopu

    The usefulness of a contrast agent and gradient-recalled acquisition in a steady-state imaging sequence for magnetic resonance imaging-guided noninvasive ultrasound surgery

    No full text
    Rationale and Objectives. The ability of magnetic resonance imaging to detect small temperature elevations from focused ultrasound surgery beams was studied. In addition, the value of a contrast agent in delineating the necrosed tissue volume was investigated. materials and methods. Gradient-recalled acquisition in a steady state (GRASS) T1-weighted images were used to follow the temperature elevation and tissue changes during 2-minute sonications in the thigh muscles of 10 rabbits. The effects of the treatment on the vascular network was investigated by injecting a contrast agent bolus before or after the son-ication. Results. The signal intensity decreased during the sonica-tion, and the reduction was directly proportional to the applied power and increase in temperature. The signal intensity returned gradually back to baseline after the ultrasound was turned off. Injection of the contrast agent increased the signal intensity in muscle, but not in the necrosed tissue. The dimensions of the delineated tissue volume were the same as mca-sured from the T2-weightcd fast-spin-echo images and postmortem tissue examination. Conclusions. These results indicate that magnetic resonance imaging can be used to detect temperature elevations that do not cause tissue damage and that contrast agent can be used to delineate the necrosed tissue volume. © 1994. J.B. Lippincott Company
    corecore