105 research outputs found

    Planar Metamaterials for Antireflection Coating

    Full text link
    We present a novel antireflection approach utilizing planar metamaterials on dielectric surfaces. It consists of a split-ring resonator array and a metal mesh separated by a thin dielectric spacer. The coating dramatically reduces the reflectance and greatly enhances the transmittance over a wide range of incidence angles and a narrow bandwidth. Antireflection is achieved by tailoring the magnitude and phase shifts of waves reflected and transmitted at metamaterial boundaries, resulting in a destructive interference in reflection and constructive interference in transmission. The coating can be very thin and there is no requirement for the spacer dielectric constant

    Cooper Pairing in Ultracold K-40 Using Feshbach Resonances

    Full text link
    We point out that the fermionic isotope K-40 is a likely candidate for the formation of Cooper pairs in an ultracold atomic gas. Specifically, in an optical trap that simultaneously traps the spin states |9/2,-9/2> and |9/2,-7/2>, there exists a broad magnetic field Feshbach resonance at B = 196 gauss that can provide the required strong attractive interaction between atoms. An additional resonance, at B = 191 gauss, could generate p-wave pairing between identical |9/2,-7/2> atoms. A Cooper-paired degenerate Fermi gas could thus be constructed with existing ultracold atom technology.Comment: 4 pages, 2 figs, submitted to Phys. Rev.

    Effects of Mergers and Core Structure on the Bulk Properties of Nearby Galaxy Clusters

    Full text link
    We use morphological measurements and the scatter of clusters about observed and simulated scaling relations to examine the impact of merging and core-related phenomena on the structure of galaxy clusters. All relations constructed from emission-weighted mean temperature and intracluster medium mass, X-ray luminosity, isophotal size, or near-IR luminosity show a separation between cool core (CC) and non-cool core (NCC) clusters. We attribute this partially to a temperature bias in CC clusters, and partially to other cool core-related structural changes. We attempt to minimize CC/NCC separation in scaling relations by applying a uniform scale factor to CC cluster temperatures and determining the scale factor for each relation that minimizes the separation between CC and NCC populations, and by introducing central surface brightness as a third parameter in relations. The latter approach reduces scatter in relations more than temperature scaling. We compare the scatter within subsamples split by CC/NCC and morphological merger indicators. CC clusters and clusters with less substructure generally exhibit higher scatter about relations. The larger structural variations in CC clusters exit well outside the core, suggesting that a process more global than core radiative instability is at work. Simulations without cooling mechanisms also show no correlation between substructure and larger scatter about relations, indicating that any merger-related scatter increases are subtle. The results indicate that cool core related phenomena, not merging processes, are the primary contributor to scatter in scaling relations. Our analysis does not appear to support the scenario in which clusters evolve cool cores over time unless they experience major mergers. (Abridged)Comment: 18 pages, 17 figures; minor changes to text to match accepted version. To appear in Ap

    The patient reporting and action for a safe environment (PRASE) intervention: a feasibility study

    Get PDF
    Background: There is growing interest in the role of patients in improving patient safety. One such role is providing feedback on the safety of their care. Here we describe the development and feasibility testing of an intervention that collects patient feedback on patient safety, brings together staff to consider this feedback and to plan improvement strategies. We address two research questions: i) to explore the feasibility of the process of systematically collecting feedback from patients about the safety of care as part of the PRASE intervention; and, ii) to explore the feasibility and acceptability of the PRASE intervention for staff, and to understand more about how staff use the patient feedback for service improvement. Method: We conducted a feasibility study using a wait-list controlled design across six wards within an acute teaching hospital. Intervention wards were asked to participate in two cycles of the PRASE (Patient Reporting & Action for a Safe Environment) intervention across a six-month period. Participants were patients on participating wards. To explore the acceptability of the intervention for staff, observations of action planning meetings, interviews with a lead person for the intervention on each ward and recorded researcher reflections were analysed thematically and synthesised. Results: Recruitment of patients using computer tablets at their bedside was straightforward, with the majority of patients willing and able to provide feedback. Randomisation of the intervention was acceptable to staff, with no evidence of differential response rates between intervention and control groups. In general, ward staff were positive about the use of patient feedback for service improvement and were able to use the feedback as a basis for action planning, although engagement with the process was variable. Gathering a multidisciplinary team together for action planning was found to be challenging, and implementing action plans was sometimes hindered by the need to co-ordinate action across multiple services. Discussion: The PRASE intervention was found to be acceptable to staff and patients. However, before proceeding to a full cluster randomised controlled trial, the intervention requires adaptation to account for the difficulties in implementing action plans within three months, the need for a facilitator to support the action planning meetings, and the provision of training and senior management support for participating ward teams. Conclusions: The PRASE intervention represents a promising method for the systematic collection of patient feedback about the safety of hospital care

    Changes in balance and joint position sense during a 12-day high altitude trek: The British Services Dhaulagiri medical research expedition

    Get PDF
    <div><p>Postural control and joint position sense are essential for safely undertaking leisure and professional activities, particularly at high altitude. We tested whether exposure to a 12-day trek with a gradual ascent to high altitude impairs postural control and joint position sense. This was a repeated measures observational study of 12 military service personnel (28±4 years). Postural control (sway velocity measured by a portable force platform) during standing balance, a Sharpened Romberg Test and knee joint position sense were measured, in England (113m elevation) and at 3 research camps (3619m, 4600m and 5140m) on a 12-day high altitude trek in the Dhaulagiri region of Nepal. Pulse oximetry, and Lake Louise scores were also recorded on the morning and evening of each trek day. Data were compared between altitudes and relationships between pulse oximetry, Lake Louise score, and sway velocity were explored. Total sway velocity during standing balance with eyes open (p = 0.003, d = 1.9) and during Sharpened Romberg test with eyes open (p = 0.007, d = 1.6) was significantly greater at altitudes of 3619m and 5140m when compared with sea level. Anterior-posterior sway velocity during standing balance with eyes open was also significantly greater at altitudes of 3619m and 5140m when compared with sea level (p = 0.001, d = 1.9). Knee joint position sense was not altered at higher altitudes. There were no significant correlations between Lake Louise scores, pulse oximetry and postural sway. Despite a gradual ascent profile, exposure to 3619 m was associated with impairments in postural control without impairment in knee joint position sense. Importantly, these impairments did not worsen at higher altitudes of 4600 m or 5140 m. The present findings should be considered during future trekking expeditions when developing training strategies targeted to manage impairments in postural control that occur with increasing altitude.</p></div

    A Four-Way Comparison of Cardiac Function with Normobaric Normoxia, Normobaric Hypoxia, Hypobaric Hypoxia and Genuine High Altitude.

    Get PDF
    There has been considerable debate as to whether different modalities of simulated hypoxia induce similar cardiac responses.This was a prospective observational study of 14 healthy subjects aged 22-35 years. Echocardiography was performed at rest and at 15 and 120 minutes following two hours exercise under normobaric normoxia (NN) and under similar PiO2 following genuine high altitude (GHA) at 3,375m, normobaric hypoxia (NH) and hypobaric hypoxia (HH) to simulate the equivalent hypoxic stimulus to GHA.All 14 subjects completed the experiment at GHA, 11 at NN, 12 under NH, and 6 under HH. The four groups were similar in age, sex and baseline demographics. At baseline rest right ventricular (RV) systolic pressure (RVSP, p = 0.0002), pulmonary vascular resistance (p = 0.0002) and acute mountain sickness (AMS) scores were higher and the SpO2 lower (p<0.0001) among all three hypoxic groups (GHA, NH and HH) compared with NN. At both 15 minutes and 120 minutes post exercise, AMS scores, Cardiac output, septal S', lateral S', tricuspid S' and A' velocities and RVSP were higher and SpO2 lower with all forms of hypoxia compared with NN. On post-test analysis, among the three hypoxia groups, SpO2 was lower at baseline and 15 minutes post exercise with GHA (89.3±3.4% and 89.3±2.2%) and HH (89.0±3.1 and (89.8±5.0) compared with NH (92.9±1.7 and 93.6±2.5%). The RV Myocardial Performance (Tei) Index and RVSP were significantly higher with HH than NH at 15 and 120 minutes post exercise respectively and tricuspid A' was higher with GHA compared with NH at 15 minutes post exercise.GHA, NH and HH produce similar cardiac adaptations over short duration rest despite lower SpO2 levels with GHA and HH compared with NH. Notable differences emerge following exercise in SpO2, RVSP and RV cardiac function

    Changes in appetite, energy intake, body composition and circulating ghrelin constituents during an incremental trekking ascent to high altitude

    Get PDF
    Purpose Circulating acylated ghrelin concentrations are associated with altitude-induced anorexia in laboratory environments, but have never been measured at terrestrial altitude. This study examined time course changes in appetite, energy intake, body composition, and ghrelin constituents during a high-altitude trek. Methods Twelve participants [age: 28(4) years, BMI 23.0(2.1) kg m−2] completed a 14-day trek in the Himalayas. Energy intake, appetite perceptions, body composition, and circulating acylated, des-acylated, and total ghrelin concentrations were assessed at baseline (113 m, 12 days prior to departure) and at three fixed research camps during the trek (3619 m, day 7; 4600 m, day 10; 5140 m, day 12). Results Relative to baseline, energy intake was lower at 3619 m (P = 0.038) and 5140 m (P = 0.016) and tended to be lower at 4600 m (P = 0.056). Appetite perceptions were lower at 5140 m (P = 0.027) compared with baseline. Acylated ghrelin concentrations were lower at 3619 m (P = 0.046) and 4600 m (P = 0.038), and tended to be lower at 5140 m (P = 0.070), compared with baseline. Des-acylated ghrelin concentrations did not significantly change during the trek (P = 0.177). Total ghrelin concentrations decreased from baseline to 4600 m (P = 0.045). Skinfold thickness was lower at all points during the trek compared with baseline (P ≤ 0.001) and calf girth decreased incrementally during the trek (P = 0.010). Conclusions Changes in plasma acylated and total ghrelin concentrations may contribute to the suppression of appetite and energy intake at altitude, but differences in the time course of these responses suggest that additional factors are also involved. Interventions are required to maintain appetite and energy balance during trekking at terrestrial altitudes

    Expression of the blood-group-related glycosyltransferase B4galnt2 influences the intestinal microbiota in mice

    Get PDF
    Glycans on mucosal surfaces have an important role in host–microbe interactions. The locus encoding the blood-group-related glycosyltransferase β-1,4-N-acetylgalactosaminyltransferase 2 (B4galnt2) is subject to strong selective forces in natural house-mouse populations that contain a common allelic variant that confers loss of B4galnt2 gene expression in the gastrointestinal (GI) tract. We reasoned that altered glycan-dependent intestinal host–microbe interactions may underlie these signatures of selection. To determine whether B4galnt2 influences the intestinal microbial ecology, we profiled the microbiota of wild-type and B4galnt2-deficient siblings throughout the GI tract using 16S rRNA gene pyrosequencing. This revealed both distinct communities at different anatomic sites and significant changes in composition with respect to genotype, indicating a previously unappreciated role of B4galnt2 in host–microbial homeostasis. Among the numerous B4galnt2-dependent differences identified in the abundance of specific bacterial taxa, we unexpectedly detected a difference in the pathogenic genus, Helicobacter, suggesting Helicobacter spp. also interact with B4galnt2 glycans. In contrast to other glycosyltransferases, we found that the host intestinal B4galnt2 expression is not dependent on presence of the microbiota. Given the long-term maintenance of alleles influencing B4galnt2 expression by natural selection and the GI phenotypes presented here, we suggest that variation in B4galnt2 GI expression may alter susceptibility to GI diseases such as infectious gastroenteritis
    • …
    corecore