4,494 research outputs found

    Snakes and ladders: localized solutions of plane Couette flow

    Full text link
    We demonstrate the existence of a large number of exact solutions of plane Couette flow, which share the topology of known periodic solutions but are localized in space. Solutions of different size are organized in a snakes-and-ladders structure strikingly similar to that observed for simpler pattern-forming PDE systems. These new solutions are a step towards extending the dynamical systems view of transitional turbulence to spatially extended flows.Comment: submitted to Physics Review Letter

    Location-Allocation Models for Establishing Facilities

    Get PDF

    Unstable periodic orbits and heteroclinic connections in plane Couette flow

    Full text link
    Equilibrium, traveling wave, and periodic orbit solutions of pipe, channel, and plane Couette flows can now be computed precisely at Reynolds numbers above the onset of turbulence. These invariant solutions capture the complex dynamics of wall-bounded rolls and streaks and provide a framework for understanding low-Reynolds turbulent shear flows as dynamical systems. We present fluid dynamics videos of plane Couette flow illustrating periodic orbits, a close pass of turbulent flow to a periodic orbit, and heteroclinic connections between unstable equilibria.Comment: Short paper accompanying video submitted to the Gallery of Fluid Motion for the 2008 meeting of the APS Division of Fluid Dynamic

    Science requirements for a global change technology architecture trade study

    Get PDF
    Science requirements for a global change technology initiative (GCTI) Architecture Trade Study were established by reviewing and synthesizing results from recent studies. A scientific rationale was adopted and used to identify a comprehensive set of measureables and their priorities. Spatial and temporal requirements for a number of measurement parameters were evaluated based on results from several working group studies. Science requirements were defined using these study results in conjunction with the guidelines for investigating global changes over a time scale of decades to centuries. Requirements are given separately for global studies and regional process studies. For global studies, temporal requirements are for sampling every 1 to 12 hours for atmospheric and radiation parameters and 1 day or more for most earth surface measurements. Therefore, the atmospheric measureables provide the most critical drivers for temporal sampling. Spatial sampling requirements vary from 1 km for land and ocean surface characteristics to 50 km for some atmospheric parameters. Thus, the land and ocean surface parameters have the more significant spatial variations and provide the most challenging spatial sampling requirements

    The Enrichment History of Hot Gas in Poor Galaxy Groups

    Get PDF
    We have analyzed the ASCA SIS and GIS data for seventeen groups and determined the average temperature and abundance of the hot x-ray emitting gas. For groups with gas temperatures less than 1.5 keV we find that the abundance is correlated with the gas temperature and luminosity. We have also determined the abundance of the alpha-elements and iron independently for those groups with sufficient counts. We find that for the cool groups (i.e. kT <1.5 keV) the ratio of alpha-elements to iron is ~1, about half that seen in clusters. Spectral fits with the S, Si and Fe abundances allowed to vary separately suggest the S/Fe ratio is similar to that seen in clusters while the Si/Fe ratio in groups is half the value determined for richer systems. The mass of metals per unit blue luminosity drops rapidly in groups as the temperature drops. There are two possible explanations for this decrease. One is that the star formation in groups is very different from that in rich clusters. The other explanation is that groups lose much of their enriched material via winds during the early evolution of ellipticals. If the latter is true, we find that poor groups will have contributed significantly (roughly 1/3 of the metals) to the enrichment of the intergalactic medium.Comment: 19 Pages with 2 figures, Accepted for publication in the Astrophysical Journa

    The evolution of the natural killer complex; a comparison between mammals using new high-quality genome assemblies and targeted annotation.

    Get PDF
    Natural killer (NK) cells are a diverse population of lymphocytes with a range of biological roles including essential immune functions. NK cell diversity is in part created by the differential expression of cell surface receptors which modulate activation and function, including multiple subfamilies of C-type lectin receptors encoded within the NK complex (NKC). Little is known about the gene content of the NKC beyond rodent and primate lineages, other than it appears to be extremely variable between mammalian groups. We compared the NKC structure between mammalian species using new high-quality draft genome assemblies for cattle and goat; re-annotated sheep, pig, and horse genome assemblies; and the published human, rat, and mouse lemur NKC. The major NKC genes are largely in the equivalent positions in all eight species, with significant independent expansions and deletions between species, allowing us to propose a model for NKC evolution during mammalian radiation. The ruminant species, cattle and goats, have independently evolved a second KLRC locus flanked by KLRA and KLRJ, and a novel KLRH-like gene has acquired an activating tail. This novel gene has duplicated several times within cattle, while other activating receptor genes have been selectively disrupted. Targeted genome enrichment in cattle identified varying levels of allelic polymorphism between the NKC genes concentrated in the predicted extracellular ligand-binding domains. This novel recombination and allelic polymorphism is consistent with NKC evolution under balancing selection, suggesting that this diversity influences individual immune responses and may impact on differential outcomes of pathogen infection and vaccination

    Are Red Tidal Features Unequivocal Signatures of Major Dry Mergers?

    Get PDF
    We use a cosmological numerical simulation to study the tidal features produced by a minor merger with an elliptical galaxy. We find that the simulated tidal features are quantitatively similar to the red tidal features, i.e., dry tidal features, recently found in deep images of elliptical galaxies at intermediate redshifts. The minor merger in our simulation does not trigger star formation due to active galactic nuclei heating. Therefore, both the tidal features and the host galaxy are red, i.e. a dry minor merger. The stellar mass of the infalling satellite galaxy is about 10^10 Msun, and the tidal debris reach the surface brightness of mu_R~27 mag arcsec^-2. Thus, we conclude that tidal debris from minor mergers can explain the observed dry tidal features in ellipticals at intermediate redshifts, although other mechanisms (such as major dry mergers) may also be important.Comment: 7 pages, 7 figures, accepted for publication in Ap
    • 

    corecore