

717

NASA Technical Memorandum 104082

•

SCIENCE REQUIREMENTS FOR A GLOBAL CHANGE TECHNOLOGY ARCHITECTURE TRADE STUDY

John T. Suttles, Edwin F. Harrison, Gary G. Gibson, and Thomas G. Campbell

May 1991

-1

2

A STENCE REQUIREMENTS FUR A		N91-2555
(NASA-TM-100002) SUTHING ARCHITECTURE TRADE JUPAL CHARTE TECHNOLOUY ARCHITECTURE CSCL 049		unclas
STURY (NASA) II P	63/47	0024797

Langley Research Center Hampton, Virginia 23665-5225

SCIENCE REQUIREMENTS FOR A GLOBAL CHANGE TECHNOLOGY INITIATIVE ARCHITECTURE TRADE STUDY

by

John T. Suttles^{*}, Edwin F. Harrison^{*}, Gary G. Gibson[†], and Thomas G. Campbell[‡]

SUMMARY

Science requirements for a Global Change Technology Initiative (GCTI) Architecture Trade Study have been established by reviewing and synthesizing results from recent studies. A scientific rationale was adopted and used to identify a comprehensive set of measurables and their priorities. Spatial and temporal requirements for a number of measurement parameters were evaluated based on results from several working group studies. Science requirements have been defined using these study results in conjunction with the guidelines for investigating global changes over a time scale of decades to centuries. Requirements are given separately for global studies and regional process studies. For global studies, temporal requirements are for sampling every 1 to 12 hours for atmospheric and radiation parameters and 1 day or more for most Earth surface measurements. Therefore, the atmospheric measurables provide the most critical drivers for temporal sampling. Spatial sampling requirements vary from 1 km for land and ocean surface characteristics to 50 km for some atmospheric parameters. Thus, the land and ocean surface parameters have the more significant spatial variations and provide the most challenging spatial sampling requirements.

INTRODUCTION

Global observations of the physical parameters required to detect and quantify changes in global climate, composition of the atmosphere, surface properties, and the biosphere can only be accomplished using sophisticated instruments on orbiting spacecraft. Defining such a mission is a formidable task involving several essential elements. First, the overall goals of the effort must be defined and the associated science requirements established. Next, goals and

*Atmospheric Sciences Division, NASA Langley Research Center, Hampton, VA 23665-5225

⁺Lockheed Engineering and Sciences Company, Hampton, VA 23666 [‡]Guidance and Control Division, NASA Langley Research Center,

Hampton, VA 23665-5225

Table 2 shows the measurables and ESSC priorities for Earth science studies on the time scale of decades to centuries. The measurables are broken down into categories relating to the atmosphere, the Earth land and ocean surfaces, and the energy components of the solar and Earth radiation. While this list of measurables is widely accepted, the priorities are subject to debate. For example, the priority framework of the U. S. Global Change Research Program shown in table 3 (from ref. 5, a report by the Federal Coordinating Council on Science, Engineering, and Technology (FCCSET)), gives all the measurables in table 2 as high priority, but places much higher relative importance on clouds and water vapor than does the ESSC. At a recent meeting, the Investigator Working Group of the Earth Observing System (EOS) found substantial agreement with the priorities in table 3, but voiced the need for a relative measure of importance to give proper perspective to the separation between the highest and lowest priorities.

It seems prudent at this point to examine some parameters that are excluded by adopting the rationale stated above. To this end, the measurables for the time scale of thousands to millions of years are shown in table 4. Several items on this list warrant comment. Although given low priority by the FCCSET, two measurables were given the highest priority by the ESSC: seismic properties (including plate motions and deformations), and gravity and geoid. The seismic properties are presently being measured to high accuracy by in situ techniques supplemented by precise position information from the Global Positioning System (GPS). Some monitoring improvements can be achieved by the Geodynamic Laser Ranging System (GLRS). The gravity measurable is pertinent to this study, particularly as it relates to satellite position determination for analysis of altimetry measurements. This is an indirect requirement, and the GPS can provide the needed information. Therefore, based on the low priority for the adopted science rationale and the existing capabilities for these two measurables, we feel justified in not including these parameters. Also included on the list in table 4 is the lightning measurable, even though it was not included in the ESSC science discussions. Lightning has been included in several measurement system studies, however, so it was included for completeness. With regard to lightning, we have not found any specific scientific requirement for this measurement, and, therefore, it is not included in our study.

INITIAL MEASUREMENT REQUIREMENTS

Numerous scientific groups have undertaken to establish spatial and temporal requirements for Earth science measurements. Results of the most relevant studies are given in table 5 for temporal requirements and in table 6 for spatial requirements. The Science and Mission Requirements Working Group for the Earth Observing System (EOS) defined scientific requirements for a wide variety of measurements of atmospheric, radiative, and Earth surface parameters Based on current climate model characteristics, the spatial resolution for data products must be 100-250 km (horizontal) and have a vertical resolution equivalent to 9-17 pressure levels. Resolution requirements for instantaneous measurements should, therefore, be in the range of 10-25 km.

The best estimates of temporal resolution for data products range from less than 1 day to 1 month. For adequate temporal sampling, some variables such as cloud cover and associated radiation parameters require measurements across the entire diurnal cycle to avoid aliasing daily and longer-term variations. Other physical properties change at a much slower rate. Some examples are sea ice distribution and land surface properties.

Regional Process Studies are crucial to understanding the Earth as a system and to evolving improved models. These studies require the highest possible temporal and spatial resolutions, but are of limited time and space extent. They involve satellite, aircraft, and ground-based measurements used together in an intensive field study. Some of the important existing regional climate process studies are listed in table 8 for the Physical Climate System and for the Biogeochemical Cycles. These are the programs that must be continued and expanded upon in order to adequately understand regional processes and develop accurate models.

FINAL SCIENCE REQUIREMENTS

The requirements recommended for the GCTI Architecture Trade Study are shown in table 9. The requirements are given separately for Global Change Studies and Regional Process Studies. The requirements are to be interpreted as instantaneous measurement requirements, and the appropriate data products are given as a footnote. Parameters for which measurements over the diurnal cycle are critical are so noted. Where a range of values is given, the lower value is an ideal to provide an objective while the upper value is an adequate level or minimum requirement.

For Global Change Studies, temporal requirements are for sampling every 1 to 12 hours for atmospheric and radiation parameters and 1 day or more for most Earth surface measurements. For temporal variations, the most rapidly changing parameters are those related to the Earth's atmosphere. For this reason, these measurables provide the most critical drivers for temporal sampling. Spatial sampling requirements vary from 1 km for land and ocean surface characteristics to 90 km for atmospheric parameters. Thus, the land and ocean surface parameters have the more significant spatial variations and provide the most challenging spatial sampling requirements.

•	CONCEPTUAL AND NUMERICAL MODELS
	THOUSANDS TO MILLIONS OF YEARS - EARLY EARTH, CORE AND MANTLE, PLATE-TECTONICS, AND SOLAR-DRIVEN
	DECADES TO CENTURIES - PHYSICAL SYSTEMS (ATMOSPHERE, OCEANS, LAND SURFACES), BIOGEOCHEMICAL CYCLES, WATER CYCLE
•	OBSERVATIONAL REQUIREMENTS
	REMOTE SENSING VS. IN SITU OBSERVATIONS
	INSTANTANEOUS MEASUREMENTS VS. ANALYZED DATA PRODUCTS
•	SCIENTIFIC STUDIES
	GLOBAL VARIABLES (SURVEYS)
	PROCESSES (CASE STUDIES)

TABLE 1. GUIDELINES FOR SCIENCE REQUIREMENTS

TABLE 3. U.S. GLOBAL CHANGE RESEARCH PROGRAM PRIORITY FRAMEWORK

SCIENCE PRIORITIES

Climate and hydrologic SystemsBiogeochemical DynamicsEarth System huearceinsHuman humanSolid Earth humanSolid Earth huearceisHydrologic SystemsDynamicsDynamicsand DynamicsHumanSolid Earth huearceisBiologRole of CloudsBiologDynamicsand DynamicsHumanSolid Earth huearceisBiologRole of CloudsBiologCloudsBiologDynamicsBiologEurvuvRole of CloudsBiologCoastalCoastalEcologDynamicsRole of CloudsBiologMeasurementsAtmosphericDynamicsBiologRole of CloudsSpeciesFurces of ModelsCoastal ErosionBouldBouldRond Heat FluxAtm ProcessingFunctionCoastal ErosionBouldBouldVater & Energyof Trace SpeciesResponse to Climate andCoean CirculaDownlamicProcessesVaterStrace/DeepClimate and Climate andCoastal ErosionModelsCoupledSystem & WaterBiogeochemistryInteractionsProductivityCranoges in ProductivityHumanSolat Energy FluxesRecordLinksNurrientiveTerrestrialInteractionsProductivityProcessesRecordCoupledCranobDomanitativeDomanitativeCranops in ProductivityProcessesRecordLondsCoupledCompositionProductivityProductivityProcessesRecord
Climate and UntanticsBiogeochemical BiogeochemicalEarth System HistoryHuman HumanNuman ProcessesHydrologic SystemsDynamicsand DynamicsHistoryHumanProcessesRole of CloudsBio/Atm/OceanDona-Term DevelopmentPaleoclimateData BaseCoastal ErosionRole of CloudsBio/Atm/OceanLong-TermPaleoclimateDevelopmentProcessesRole of CloudsBio/Atm/OceanCoastal ErosionDevelopmentVolcanicCoean CirculationFluxes of TraceMeasurementsPaleocclimateDevelopmentAnd /Atm/OceanAtmCompositionPopulationPermatrost andWaterAtmCompositionCompositionPopulationPermatrost andWaterCoupled ClimateBiogeochemistryCompositionDemandsPermatrost andVaterNutred ErosySurface/DeepOther StressesCompositionPopulationPermatrost andVaterNaterCoupled ClimateDevelopmentVolcanicProcessesSurfaceSystem &Trace SpeciesResonceCompositionPopulationPermatrost andWaterCoupled ClimateNutreactionsProductivityChanges inHeat andUnantitativeBiogeochemistryInteractionsProductivityChanges inEnergy FluxesUnantitativeTerrestrialPhysical andSea LevelLinksSurfacel BiogeochemistryInteractionsUnantitativeTerrestrial <t< td=""></t<>
Climate and Hydrologic SystemsEarth System HistoryHuman HistoryHydrologic SystemsDynamicsHistoryHuman HistoryHodrologic SystemsDynamicsHistoryHuman HistoryRole of CloudsBio/Atm/OceanDong-Term AtmPaleoclimateRole of CloudsBio/Atm/OceanLong-Term AtmPaleoclimateRole of CloudsBio/Atm/OceanLong-Term AtmPaleoclimateRole of CloudsBio/Atm/OceanLong-Term AtmosphericData BaseDocean CirculationSpeciesFurcture/ AtmosphericCompositionCoupled ClimateSpeciesResponse to Ocean Circula-Composition DistributionVater & Energy Cupled ClimateOffer StressesResponse to CompositionPopulation DistributionCoupled ClimateWaterEnergyComposition TerrestrialProductivity ProductivityComposition DemandsLinksNutrient and CryosphereDistribution Coean/Atm/Coean Coean CoeanComposition DemandsProductivity ProductivityLinksNutrient and CryosphereProductivity/ ResourceProductivity/ ResourceProduction Productivity/ ResourceProductionInteractionsTerrestrial Inputs InteractionsProductivity/ ResourceProductivity/ ResourceProductivity/ Resource
Climate and Hydrologic SystemsBiogeochemical DynamicsEcological Systems AlistoyEarth System HistoyHydrologic SystemsDynamicsEcological SystemsHistoyRole of CloudsBio/Atm/OceanLong-Term MeasurementsPaleooclimateRole of CloudsFluxes of TraceMeasurementsPaleooclimateOcean CirculationFluxes of TraceNeasurementsPaleooclimateDynamicsFunctionCompositionCompositionMater & Energyof Trace SpeciesFunctionCompositionVater & Energyof Trace SpeciesResponse toCompositionVater & EnergyOrther StressesCompositionCoupled ClimateNutater andOther StressesCompositionCoupled ClimateBiogeochemistryDither StressesCompositionCoupled ClimateBiogeochemistryDither StressesCompositionCoupled ClimateCoupled Climate andOther StressesCompositionLinksDuantitativeBiogeochemistryPhysical andChangeCryosphereCryosphereProductivity/ResourcePaleohydrologyInteractionsTerrestrial InputsModelsProductivity/ResourceResourceModelsProductivity/ResourceModels
Climate and Hydrologic SystemsBiogeochemical DynamicsEcological Systems and DynamicsRole of CloudsBio/Atm/OceanLong-Term and DynamicsRole of CloudsBio/Atm/OceanLong-Term MeasurementsRole of CloudsBio/Atm/OceanCong-Term MeasurementsOcean CirculationFluxesAtm Processing of Trace SpeciesLand/Atm/OceanAtm Processing SpeciesFunctionWater & EnergySurface/DeepClimate and Other StressesWater & EnergySurface/DeepClimate and Dther StressesVater & EnergySurface/DeepClimate and Dther StressesVater & EnergySurface/DeepClimate and Dther StressesCoupled ClimateBiogeochemistryInteractions Dther StressesCoupled ClimateNutrient and BiologicalPhysical and BiologicalCryosphereDuantitativeTerrestrialLinksNutrient and BiosphereProcessesCryosphereTerrestrial InputsProcessesInteractionsTerrestrial InputsProcessesProductivity/ResponsesProductivity/Responses
Climate and Hydrologic SystemsBiogeocchemical DynamicsHydrologic SystemsBio/Atm/OceanRole of CloudsBio/Atm/OceanRole of CloudsBio/Atm/OceanOcean CirculationSpeciesand Heat FluxAtm ProcessingUvater & EnergyAtm ProcessingWater & EnergySurface/DeepWater & Coupled ClimateSurface/DeepSystem &WaterCoupled ClimateBiogeochemistryCoupled ClimateNutrient andCryosphereNutrient andCryosphereTerrestrial InputsInteractionsto MarineEcosystemsEcosystems
Climate and Hydrologic Systems Role of Clouds Ocean Circulation and Heat Flux Land/Atm/Ocean Water & Energy Fluxes Coupled Climate System & Quantitative Links Ocean/Atm/ Cryosphere Interactions

INCREASING PRIORITY

FEDERAL COORDINATING COUNCIL ON SCIENCE, ENGINEERING, AND TECHNOLOGY SOURCE: COMMITTEE ON EARTH SCIENCES

VTS	UTE)	GEO-EOS	1 SEC	٩N	15M	30M	15-60M	30-60M	1-3H	H	٩Z		1-3H	15-60M	15-60M	1-3H	30-60M	T -	AN	15-60M	NA	NA	NA	NA
EQUIREMEN	OUR, M=MIN	LaRC	1 D	1-3H	1-3H	3-12H	3-12H	3-12H	1-3H	1-3H	1-3H		1-3H	1-3H	1-3H	3-30D	12H-3D	2-7D	2D	1D	2D	7D	2D	10
TEMPORAL R	(D=DAY, H=HC	JPL	1D	30M	đ	12H	10	12H	ЭН	нε	30M-12H		12H	6-24H	ЭН	3-30D	12H-3D	7D	2D	Hs-Ds	2D	7D	2D	1-7D
		EOS	NA	NA	10	1	10	12H	6H	10	12-24H		6-24H	12H	0	3-30D	2-7D	2-7D	2D	2D	٩N	7D	NA	7D
	MEASURABLE		SPECTRAL RADIATION	PRESSURE (SURFACE)	TEMPERATURE PROFILE	STRATOSPHERIC GASES	AEROSOLS & PARTICULATES	TROPOSPHERIC WATER VAPOR	CLOUD COVER & HEIGHT	TROPOSPHERIC GASES	WIND FIELDS	REFLECTED SW &	EMITTED LW FLUX	SURFACE TEMPERATURE	PRECIPITATION	VEGETATION COVER/TYPE	SOIL MOISTURE	BIOMASS INVENTORY	OCEAN COLOR (CHLOROPHYLL)	OCEAN CIRCULATION	SEA LEVEL RISE	SEA ICE COVER/DEPTH	OCEAN CO2	SNOW COVER/DEPTH/WETNESS
	REGIME/	CATEGORY	SOLAR				ATMOSPHERE					RADIATION	BUDGET					EARTH	(LAND/	OCEAN)				

TEMPORAL REQUIREMENTS FOR EARTH SCIENCE MEASUREMENTS TABLE 5.

NA = NOT AVAILABLE

GLOBAL CLIMATE CHANGE STUDIES

TABLE 7.

* VALUES ARE RESOLUTIONS FOR DATA PRODUCTS, MEASUREMENT RESOLUTION **REQUIREMENTS MAY BE HIGHER**

COMPLEX EARTH SYSTEM	EVELOPMENT, VERIFICATION, AND IMPROVEMENT	IS ESSENTIAL TO DETECTION OF LONG-TERM TRENDS	ITS ARE GLOBAL CLIMATE MODEL CHARACTERISTICS:	100-250 KM (HORIZONTAL) 9-17 PRESSURE LEVELS	GLOBAL EXTENT	1 DAY - 1 MONTH	DECADES	
 MODELS ARE REQUIRED TO UNDERSTAND VERY C 	GLOBAL OBSERVATIONS ESSENTIAL TO MODEL DE	 HIGH ABSOLUTE ACCURACY FOR OBSERVATIONS 	 BEST GUIDES FOR OBSERVATIONAL REQUIREMEN 	- SPATIAL RESOLUTION*	- SPATIAL COVERAGE	- TEMPORAL RESOLUTION*	- TEMPORAL COVERAGE	

GLOBAL CLIMATE CHANGE STUDIES

TABLE 7.

 VALUES ARE RESOLUTIONS FOR DATA PRODUCTS, MEASUREMENT RESOLUTION REQUIREMENTS MAY BE HIGHER REQUIREMENTS* FOR EARTH SCIENCE MEASUREMENTS TABLE 9.

		DIURNAL	GLOBAL	CHANGE	REGIONAL	. PROCESS
REGIME/	MEASURABLE	CYCLE	STU	DIES	STU	DIES
CATEGORY		CRITICAL	TEMPORAL	SPATIAL	TEMPORAL	SPATIAL
SOLAR	SPECTRAL RADIATION	NO	1D	SUN DISK	10	SUN DISK
	PRESSURE (SURFACE)	N	3-12H	10km		
	TEMPERATURE PROFILE	YES	1-3H	10-50km	15M-1H	5km
	STRATOSPHERIC GASES	Q	3-12H	50km	30M	5-10km
ATMOSPHERE	AEROSOLS & PARTICULATES	N	3-12H	10km	15M-1H	0.1-1km
	TROPOSPHERIC WATER VAPOR	Q	3-12H	10km	30M-1H	10km
	CLOUD COVER & HEIGHT	YES	1-3H	1 km	15M-1H	1km
	TROPOSPHERIC GASES	YES	1-3H	10km	30M-1H	10-50km
	WIND FIELDS	YES	1-3H	10km	30M-1H	
RADIATION	REFLECTED SW &					
BUDGET	EMITTED LW FLUX	YES	1-3H	10-30km	30M-1H	1-30km
	SURFACE TEMPERATURE	YES	1-3H	1-4km	6M-24H	30m-200km
	PRECIPITATION	YES	1-3H	1-30km	3M-3H	1-200km
	VEGETATION COVER/TYPE	0 N	7D	1km	1-30D	30m-10km
	SOIL MOISTURE	0N N	2D	1-10km	12H-7D	30m-10km
EARTH	BIOMASS INVENTORY	02	7D	1 km	1-30D	1-10km
(LAND/	OCEAN COLOR (CHLOROPHYLL)	Q	2D	1-4km	2D	30m-4km
OCEAN)	OCEAN CIRCULATION	NO	2D	1-4km	0	30m-4km
	SEA LEVEL RISE	Q	2D	10km	2D	10km
	SEA ICE COVER/DEPTH	0N N	7D	1-20km	1-3D	1-25km
	OCEAN CO2	0N N	2D	0.5km		
	SNOW COVER/DEPTH/WETNESS	Q	0Z	1 km	12H-3D	1-10km
* SAMPLING RI	EQUIREMENTS ARE GIVEN; DATA F	PRODUCTS	FOR GLOBA	L CHANGE S	TUDIES ARE	DAILY

MEANS AND 100-250km MEANS, DATA PRODUCTS FOR REGIONAL PROCESS STUDIES ARE HIGHLY VARIABLE.