23 research outputs found

    Key challenges in bringing CRISPR-mediated somatic cell therapy into the clinic.

    Get PDF
    Genome editing using clustered regularly interspersed short palindromic repeats (CRISPR) and CRISPR-associated proteins offers the potential to facilitate safe and effective treatment of genetic diseases refractory to other types of intervention. Here, we identify some of the major challenges for clinicians, regulators, and human research ethics committees in the clinical translation of CRISPR-mediated somatic cell therapy

    Historical changes in sediments of Pyramid Lake, Nevada, USA: consequences of changes in the water balance of a terminal desert lake

    Full text link
    Sediment cores from the shallow and deep basins of Pyramid Lake, Nevada, revealed variations in composition with depth reflecting changes in lake level, river inflow, and lake productivity. Recent sediments from the period of historical record indicate: (1) CaCO 3 and organic content of sediment in the shallow basin decrease at lower lake level, (2) CaCO 3 content of deep basin sediments increases when lake level decreases rapidly, and (3) the inorganic P content of sediments increases with decreasing lake volume. Variations in sediment composition also indicate several periods for which productivity in Pyramid Lake may have been elevated over the past 1000 years. Our data provide strong evidence for increased productivity during the first half of the 20th Century, although the typical pattern for cultural eutrophication was not observed. The organic content of sediments also suggests periods of increased productivity in the lake prior to the discovery and development of the region by white settlers. Indeed, a broad peak in organic fractions during the 1800's originates as an increase starting around 1600. However, periods of changing organic content of sediments also correspond to periods when inflow to the lake was probably at extremes (e.g. drought or flood) indicating that fluctuations in river inflow may be an important factor affecting sediment composition in Pyramid Lake.Peer Reviewedhttp://deepblue.lib.umich.edu/bitstream/2027.42/43069/1/10933_2004_Article_BF00678089.pd

    International Divergence in Gene Patenting.

    No full text
    This review explores the recent divergence in international patent law relating to genes and associated subject matter. This divergence stems primarily from decisions of the highest courts in the United States and Australia on the eligibility of patent claims relating to the BRCA gene sequences. Patent offices, courts, and policy makers have struggled for many years to clearly articulate the bounds of patent claims on isolated and synthetic DNA and related products and processes, including methods for their use in genetic diagnostics. This review provides context to the current divergence by mapping key events in the gene patent journey from the early 1980s onward in five key jurisdictions: the United States, the member states of the European Patent Convention, Australia, Canada, and China. Early approaches to gene patenting had some commonalities across jurisdictions, which makes exploration of the recent divergence all the more interesting.There is insufficient empirical evidence to date to confidently predict the consequences of this recent divergence. However, it could potentially have a significant effect on local industry and on consumer access

    Erythropoietin couples erythropoiesis, B-lymphopoiesis, and bone homeostasis within the bone marrow microenvironment

    No full text
    Erythropoietin (Epo) has been used in the treatment of anemia resulting from numerous etiologies, including renal disease and cancer. However, its effects are controversial and the expression pattern of the Epo receptor (Epo-R) is debated. Using in vivo lineage tracing, we document that within the hematopoietic and mesenchymal lineage, expression of Epo-R is essentially restricted to erythroid lineage cells. As expected, adult mice treated with a clinically relevant dose of Epo had expanded erythropoiesis because of amplification of committed erythroid precursors. Surprisingly, we also found that Epo induced a rapid 26% loss of the trabecular bone volume and impaired B-lymphopoiesis within the bone marrow microenvironment. Despite the loss of trabecular bone, hematopoietic stem cell populations were unaffected. Inhibition of the osteoclast activity with bisphosphonate therapy blocked the Epo-induced bone loss. Intriguingly, bisphosphonate treatment also reduced the magnitude of the erythroid response to Epo. These data demonstrate a previously unrecognized in vivo regulatory network coordinating erythropoiesis, B-lymphopoiesis, and skeletal homeostasis. Importantly, these findings may be relevant to the clinical application of Epo

    Modeling distinct osteosarcoma subtypes in vivo using Cre: Lox and lineage-restricted transgenic shRNA

    No full text
    Osteosarcoma is the most common primary cancer of bone and one that predominantly affects children and adolescents. Osteoblastic osteosarcoma represents the major subtype of this tumor, with approximately equal representation of fibroblastic and chondroblastic subtypes. We and others have previously described murine models of osteosarcoma based on osteoblast-restricted Cre:lox deletion of Trp53 (p53) and Rb1 (Rb), resulting in a phenotype most similar to fibroblastic osteosarcoma in humans. We now report a model of the most prevalent form of human osteosarcoma, the osteoblastic subtype. In contrast to other osteosarcoma models that have used Cre:lox mediated gene deletion, this model was generated through shRNA-based knockdown of p53. As is the case with the human disease the shRNA tumors most frequently present in the long bones and preferentially disseminate to the lungs; feature less consistently modeled using Cre:lox approaches. Our approach allowed direct comparison of the in vivo consequences of targeting the same genetic drivers using two different technologies, Cre:lox and shRNA. This demonstrated that the effects of Cre:lox and shRNA mediated knock-down are qualitatively different, at least in the context of osteosarcoma, and yielded distinct subtypes of osteosarcoma. Through the use of complementary genetic modification strategies we have established a model of the most common clinical subtype of osteosarcoma that was not previously represented and more fully recapitulated the clinical spectrum of this cancer
    corecore