2,074 research outputs found

    ‘Walking ... just walking’: how children and young people’s everyday pedestrian practices matter

    Get PDF
    In this paper we consider the importance of ‘walking
 just walking’ for many children and young people’s everyday lives. We will show how, in our research with 175 9-16-year-olds living in new urban developments in south-east England, some particular (daily, taken-for-granted, ostensibly aimless) forms of walking were central to the lives, experiences and friendships of most children and young people. The main body of the paper highlights key characteristics of these walking practices, and their constitutive role in these children and young people’s social and cultural geography. Over the course of the paper we will argue that ‘everyday pedestrian practices’ (after Middleton 2010, 2011) like these require us to think critically about two bodies of geographical and social scientific research. On one hand, we will argue that the large body of research on children’s spatial range and independent mobility could be conceptually enlivened and extended to acknowledge bodily, social, sociotechnical and habitual practices. On the other hand, we will suggest that the empirical details of such practices should prompt critical reflection upon the wonderfully rich, multidisciplinary vein of conceptualisation latterly termed ‘new walking studies’ (Lorimer 2011). Indeed, in conclusion we shall argue that the theoretical vivacity of walking studies, and the concerns of more applied empirical approaches such as work on children’s independent mobility, could productively be interrelated. In so doing we open out a wider challenge to social and cultural geographers, to expedite this kind of interrelation in other research contexts

    Intra-Specific Difference in the Effect of Salinity on Physiological Performance in European Perch (<i>Perca fluviatilis</i>) and Its Ecological Importance for Fish in Estuaries

    Get PDF
    Changes in environmental salinity challenge fish homeostasis and may affect physiological performance, such as swimming capacity and metabolism, which are important for foraging, migration, and escaping predators in the wild. The effects of salinity stress on physiological performance are largely species specific, but may also depend on intra-specific differences in physiological capabilities of sub-populations. We measured critical swimming speed (U crit ) and metabolic rates during swimming and at rest at salinities of 0 and 10 in European perch ( Perca fluviatilis ) from a low salinity tolerance population (LSTP) and a high salinity tolerance population (HSTP). U crit of LSTP was significantly reduced at a salinity of 10 yet was unaffected by salinity change in HSTP. We did not detect a significant cost of osmoregulation, which should theoretically be apparent from the metabolic rates during swimming and at rest at a salinity of 0 compared to at a salinity of 10 (iso-osmotic). Maximum metabolic rates were also not affected by salinity, indicating a modest tradeoff between respiration and osmoregulation (osmo-respiratory compromise). Intra-specific differences in effects of salinity on physiological performance are important for fish species to maintain ecological compatibility in estuarine environments, yet render these sub-populations vulnerable to fisheries. The findings of the present study are therefore valuable knowledge in conservation and management of estuarine fish populations

    An Index to Assess the Sensitivity of Gulf of Mexico Species to Changes in Estuarine Salinity Regimes

    Get PDF
    An index of biological sensitivity to changes in freshwater inflow was developed for 44 species in 22 Gulf of Mexico estuaries for adult and juvenile life stages of fishes and macroinvertebrates. The BioSalinity Index (BSI) provides an innovative approach to quantify estuary-specific sensitivity of organisms to changes in estuarine salinity regimes based upon our knowledge of species salinity habitat preferences, the availability of this preferred habitat, and the relative abundance and distribution of species in time and space. We found that a significant difference exists between adult and juvenile life stage sensitivity, with juveniles exhibiting a lower sensitivity to salinity changes than adults, and that a considerable disparity exists in species-specific sensitivities among Gulf estuaries. Likewise, when the full complement of 44 species-level BSIs are averaged, marked differences in assemblage-wide sensitivity are evident across estuaries. The availability of preferred salinity habitat had a greater influence on the BSI for estuarine species than did their relative abundance and temporal distribution. The BSI was applied by members of a 1995 Gulf of Mexico freshwater inflow workshop to identify a subset of estuaries which appear more sensitive to freshwater inflow changes and are candidates for further study

    An assessment of chemical contaminants in the marine sediments of southwest Puerto Rico

    Get PDF
    This report summarizes the results of a characterization of chemical contaminants in the sediments in southwest Puerto Rico. The report is part of a project to integrate various analytical specialties to assess linkages between chemical contaminants and the condition of coral reefs. In this phase of the project, over 120 chemical contaminants were analyzed in sediments collected, including a number of organic (e.g., hydrocarbons), inorganic (e.g., metals), and biological (bacterial) compounds/analytes. The report also provides a preliminary analysis of the association between sediment contaminants and coral species richness. Overall, the levels of chemical contaminants in the study area between Guanica Bay and the town of La Parguera were fairly low. At most of the sites sampled, particularly adjacent to the town of La Parguera, concentrations of organic and inorganic contaminants were below the median values from NOAA’s National Status and Trends Program, which monitors the Nation’s coastal and estuarine waters for chemical contaminants. Elevated levels of a number of contaminant classes were seen at the two sites sampled within Guanica Bay. An initial analysis of modeled PAH (hydrocarbon) data and coral species richness (reef building species) indicated a strong negative correlation between the presence of PAHs in the sediments and coral species richness. Additional work is needed to assess possible reasons for this observed pattern. (PDF contains 126 pages)

    Low-Loss Plasmonic Dielectric Nanoresonators

    Get PDF
    Material losses in metals are a central bottleneck in plasmonics for many applications. Here we propose and theoretically demonstrate that metal losses can be successfully mitigated with dielectric particles on metallic films, giving rise to hybrid dielectric-metal resonances. In the far field, they yield strong and efficient scattering, beyond even the theoretical limits of all-metal and all-dielectric structures. In the near field, they offer high Purcell factor (>5000), high quantum efficiency (>90%), and highly directional emission at visible and infrared wavelengths. Their quality factors can be readily tailored from plasmonic-like (∌10) to dielectric-like (∌103), with wide control over the individual resonant coupling to photon, plasmon, and dissipative channels. Compared with conventional plasmonic nanostructures, such resonances show robustness against detrimental nonlocal effects and provide higher field enhancement at extreme nanoscopic sizes and spacings. These hybrid resonances equip plasmonics with high efficiency, which has been the predominant goal since the field’s inception. Keywords: light scattering; nanoantennas; Nanoparticles; nonlocality; radiative efficiency; spontaneous emissionUnited States. Army Research Office (Contract W911NF-13-D-0001)National Science Foundation (U.S.) (Grant DMR-1419807)United States. Department of Energy (Grant DE-SC0001299

    Quasicrystalline Weyl points and dense Fermi-Bragg arcs

    Full text link
    We introduce a general mechanism for obtaining Weyl points in a stack of 2D quasicrystals, which can be extended to any stack of aperiodic layers. We do so by driving a topological phase transition with the vertical crystal-momentum as the tuning parameter, which leads to gap closures at the critical points sourcing Berry curvature. To illustrate, we use a simple 3D generalization of the Qi-Wu-Zhang model defined on a Penrose quasicrystal. The presence of Weyl points is established via the local Chern marker, projected band structure and density of states. Interestingly, we uncover an analogue of Fermi arcs in the quasicrystalline setting, which we deem Fermi-Bragg arcs, densely distributed lines connecting the band degeneracies and indexed by the Bragg peaks. Signatures of such surface states in quantum oscillations and the prospect of a fully quasicrystalline Weyl system are also discussed. The flexibility of our proposal brings new opportunities for realizing other gapless topological phases in aperiodic systems, paving the way for a significantly expanded role for topological band theory.Comment: 6 pages, 3 figure

    Positivity of Spin Foam Amplitudes

    Full text link
    The amplitude for a spin foam in the Barrett-Crane model of Riemannian quantum gravity is given as a product over its vertices, edges and faces, with one factor of the Riemannian 10j symbols appearing for each vertex, and simpler factors for the edges and faces. We prove that these amplitudes are always nonnegative for closed spin foams. As a corollary, all open spin foams going between a fixed pair of spin networks have real amplitudes of the same sign. This means one can use the Metropolis algorithm to compute expectation values of observables in the Riemannian Barrett-Crane model, as in statistical mechanics, even though this theory is based on a real-time (e^{iS}) rather than imaginary-time (e^{-S}) path integral. Our proof uses the fact that when the Riemannian 10j symbols are nonzero, their sign is positive or negative depending on whether the sum of the ten spins is an integer or half-integer. For the product of 10j symbols appearing in the amplitude for a closed spin foam, these signs cancel. We conclude with some numerical evidence suggesting that the Lorentzian 10j symbols are always nonnegative, which would imply similar results for the Lorentzian Barrett-Crane model.Comment: 15 pages LaTeX. v3: Final version, with updated conclusions and other minor changes. To appear in Classical and Quantum Gravity. v4: corrects # of samples in Lorentzian tabl

    A habitat-use model to determine essential fish habitat for juvenile brown shrimp (Farfantepenaeus aztecus) in Galveston Bay, Texas

    Get PDF
    A density prediction model for juvenile brown shrimp (Farfantepenaeus aztecus) was developed by using three bottom types, five salinity zones, and four seasons to quantify patterns of habitat use in Galveston Bay, Texas. Sixteen years of quantitative density data were used. Bottom types were vegetated marsh edge, submerged aquatic vegetation, and shallow nonvegetated bottom. Multiple regression was used to develop density estimates, and the resultant formula was then coupled with a geographical information system (GIS) to provide a spatial mosaic (map) of predicted habitat use. Results indicated that juvenile brown shrimp (0.50. These results indicate that this model may have a broader geographic application and is a plausible approach in refining current EFH designations for all Gulf of Mexico estuaries with similar geomorphological and hydrological characteristics
    • 

    corecore