The amplitude for a spin foam in the Barrett-Crane model of Riemannian
quantum gravity is given as a product over its vertices, edges and faces, with
one factor of the Riemannian 10j symbols appearing for each vertex, and simpler
factors for the edges and faces. We prove that these amplitudes are always
nonnegative for closed spin foams. As a corollary, all open spin foams going
between a fixed pair of spin networks have real amplitudes of the same sign.
This means one can use the Metropolis algorithm to compute expectation values
of observables in the Riemannian Barrett-Crane model, as in statistical
mechanics, even though this theory is based on a real-time (e^{iS}) rather than
imaginary-time (e^{-S}) path integral. Our proof uses the fact that when the
Riemannian 10j symbols are nonzero, their sign is positive or negative
depending on whether the sum of the ten spins is an integer or half-integer.
For the product of 10j symbols appearing in the amplitude for a closed spin
foam, these signs cancel. We conclude with some numerical evidence suggesting
that the Lorentzian 10j symbols are always nonnegative, which would imply
similar results for the Lorentzian Barrett-Crane model.Comment: 15 pages LaTeX. v3: Final version, with updated conclusions and other
minor changes. To appear in Classical and Quantum Gravity. v4: corrects # of
samples in Lorentzian tabl