6 research outputs found

    “Astonishing successes” and “bitter disappointment”: The specific heat of hydrogen in quantum theory

    No full text
    The specific heat of hydrogen gas at low temperatures was first measured in 1912 by Arnold Eucken in Walther Nernst’s laboratory in Berlin, and provided one of the earliest experimental supports for the new quantum theory. Even earlier, Nernst had developed a quantum theory of rotating diatomic gas molecules that figured in the discussions at the first Solvay conference in late 1911. Between 1913 and 1925, Albert Einstein, Paul Ehrenfest, Max Planck, Fritz Reiche, and Erwin Schrödinger, among many others, attempted theoretical descriptions of the rotational specific heat of hydrogen, with only limited success. Quantum theory also was central to the study of molecular spectra, where initially it was more successful. Moreover, the two problems interacted in sometimes surprising ways. Not until 1927, following Werner Heisenberg’s discovery of the behavior of indistinguishable particles in modern quantum mechanics, did American theorist David Dennison find a successful theory of the specific heat of hydrogen

    “Astonishing Successes” and “Bitter Disappointment”: The Specific Heat of Hydrogen in Quantum Theory

    No full text

    Evolution of genes and genomes on the Drosophila phylogeny

    No full text
    Comparative analysis of multiple genomes in a phylogenetic framework dramatically improves the precision and sensitivity of evolutionary inference, producing more robust results than single-genome analyses can provide. The genomes of 12 Drosophila species, ten of which are presented here for the first time (sechellia, simulans, yakuba, erecta, ananassae, persimilis, willistoni, mojavensis, virilis and grimshawi), illustrate how rates and patterns of sequence divergence across taxa can illuminate evolutionary processes on a genomic scale. These genome sequences augment the formidable genetic tools that have made Drosophila melanogaster a pre-eminent model for animal genetics, and will further catalyse fundamental research on mechanisms of development, cell biology, genetics, disease, neurobiology, behaviour, physiology and evolution. Despite remarkable similarities among these Drosophila species, we identified many putatively non-neutral changes in protein-coding genes, non-coding RNA genes, and cis-regulatory regions. These may prove to underlie differences in the ecology and behaviour of these diverse species
    corecore