158 research outputs found

    Medial Prefrontal and Anterior Insular Connectivity in Early Schizophrenia and Major Depressive Disorder: A Resting Functional MRI Evaluation of Large-Scale Brain Network Models

    Get PDF
    Anomalies in the medial prefrontal cortex, anterior insulae, and large-scale brain networks associated with them have been proposed to underlie the pathophysiology of schizophrenia and major depressive disorder (MDD). In this study, we examined the connectivity of the medial prefrontal cortices and anterior insulae in 24 healthy controls, 24 patients with schizophrenia, and 24 patients with MDD early in illness with seed based resting state functional magnetic resonance imaging analysis using Statistical Probability Mapping. As hypothesized, reduced connectivity was found between the medial prefrontal cortex and the dorsal anterior cingulate cortex and other nodes associated with directed effort in patients with schizophrenia compared to controls while patients with MDD had reduced connectivity between the medial prefrontal cortex and ventral prefrontal emotional encoding regions compared to controls. Reduced connectivity was found between the anterior insulae and the medial prefrontal cortex in schizophrenia compared to controls, but contrary to some models emotion processing regions failed to demonstrate increased connectivity with the medial prefrontal cortex in MDD compared to controls. Although, not statistically significant after correction for multiple comparisons, patients with schizophrenia tended to demonstrate decreased connectivity between basal ganglia-thalamocortical regions and the medial prefrontal cortex compared to patients with MDD, which might be expected as these regions effect action. Results were interpreted to support anomalies in nodes associated with directed effort in schizophrenia and nodes associated with emotional encoding network in MDD compared to healthy controls

    Reexamination of Lead(II) Coordination Preferences in Sulfur-Rich Sites: Implications for a Critical Mechanism of Lead Poisoning

    Get PDF
    Recent studies suggest that the developmental toxicity associated with childhood lead poisoning may be attributable to interactions of Pb(II) with proteins containing thiol-rich structural zinc-binding sites. Here, we report detailed structural studies of Pb(II) in such sites, providing critical insights into the mechanism by which lead alters the activity of these proteins. X-ray absorption spectroscopy of Pb(II) bound to structural zinc-binding peptides reveals that Pb(II) binds in a three-coordinate Pb(II)-S3 mode, while Zn(II) is known to bind in a four-coordinate mode in these proteins. This Pb(II)-S_3 coordination in peptides is consistent with a trigonal pyramidal Pb(II)-S_3 model compound previously reported by Bridgewater and Parkin, but it differs from many other reports in the small molecule literature which have suggested Pb(II)-S_4 as a preferred coordination mode for lead. Reexamination of the published structures of these “Pb(II)-S_4” compounds reveals that, in almost all cases, the coordination number of Pb is actually 5, 6, or 8. The results reported herein combined with this new review of published structures suggest that lead prefers to avoid four-coordination in sulfur-rich sites, binding instead as trigonal pyramidal Pb(II)-S_3 or as Pb(II)-S_(5-8). In the case of structural zinc-binding protein sites, the observation that lead binds in a three-coordinate mode, and in a geometry that is fundamentally different from the natural coordination of zinc in these sites, explains why lead disrupts the structure of these peptides and thus provides the first detailed molecular understanding of the developmental toxicity of lead

    Aerosol-cloud relationships in continental shallow cumulus

    Get PDF
    Aerosol-cloud relationships are derived from 14 warm continental cumuli cases sampled during the 2006 Gulf of Mexico Atmospheric Composition and Climate Study (GoMACCS) by the Center for Interdisciplinary Remotely-Piloted Aircraft Studies (CIRPAS) Twin Otter aircraft. Cloud droplet number concentration is clearly proportional to the subcloud accumulation mode aerosol number concentration. An inverse correlation between cloud top effective radius and subcloud aerosol number concentration is observed when cloud depth variations are accounted for. There are no discernable aerosol effects on cloud droplet spectral dispersion; the averaged spectral relative dispersion is 0.30 ± 0.04. Aerosol-cloud relationships are also identified from comparison of two isolated cloud cases that occurred under different degrees of anthropogenic influence. Cloud liquid water content, cloud droplet number concentration, and cloud top effective radius exhibit subadiabaticity resulting from entrainment mixing processes. The degree of LWC subadiabaticity is found to increase with cloud depth. Impacts of subadiabaticity on cloud optical properties are assessed. It is estimated that owing to entrainment mixing, cloud LWP, effective radius, and cloud albedo are decreased by 50–85%, 5–35%, and 2–26%, respectively, relative to adiabatic values of a plane-parallel cloud. The impact of subadiabaticity on cloud albedo is largest for shallow clouds. Results suggest that the effect of entrainment mixing must be accounted for when evaluating the aerosol indirect effect

    Evaluation of Black Carbon Estimations in Global Aerosol Models

    Get PDF
    We evaluate black carbon (BC) model predictions from the AeroCom model intercomparison project by considering the diversity among year 2000 model simulations and comparing model predictions with available measurements. These 5 model-measurement intercomparisons include BC surface and aircraft concentrations, aerosol absorption optical depth (AAOD) from AERONET and Ozone Monitoring Instrument (OMI) retrievals and BC column estimations based on AERONET. In regions other than Asia, most models are biased high compared to surface concentration measurements. However compared with (column) AAOD or BC burden retreivals, the models 10 are generally biased low. The average ratio of model to retrieved AAOD is less than 0.7 in South American and 0.6 in African biomass burning regions; both of these regions lack surface concentration measurements. In Asia the average model to observed ratio is 0.6 for AAOD and 0.5 for BC surface concentrations. Compared with aircraft measurements over the Americas at latitudes between 0 and 50 N, the average model is a 15 factor of 10 larger than observed, and most models exceed the measured BC standard deviation in the mid to upper troposphere. At higher latitudes the average model to aircraft BC is 0.6 and underestimates the observed BC loading in the lower and middle troposphere associated with springtime Arctic haze. Low model bias for AAOD but overestimation of surface and upper atmospheric BC concentrations at lower latitudes 20 suggests that most models are underestimating BC absorption and should improve estimates for refractive index, particle size, and optical effects of BC coating. Retrieval uncertainties and/or differences with model diagnostic treatment may also contribute to the model-measurement disparity. Largest AeroCom model diversity occurred in northern Eurasia and the remote Arctic, regions influenced by anthropogenic sources. 25 Changing emissions, aging, removal, or optical properties within a single model generated a smaller change in model predictions than the range represented by the full set of AeroCom models. Upper tropospheric concentrations of BC mass from the aircraft measurements are suggested to provide a unique new benchmark to test scavenging and vertical dispersion of BC in global models.JRC.H.2-Climate chang
    • 

    corecore