34 research outputs found
‘Nasal flossing’: a case report of nasopharyngeal stenosis due to severe erosive lichen planus and a novel therapeutic intervention
Introduction:
We describe a case of severe erosive oral lichen planus that led to nasopharyngeal stenosis. This is a rare clinical presentation that was ultimately, successfully treated by surgery combined with post-operative ‘nasal flossing’: a novel therapeutic intervention.
Presentation of case:
A 76-year-old male suffering from a rare case of severe oral lichen planus that was resistant to conservative measures is described. Initial surgery was complicated by recurrence of nasopharyngeal stenosis. Definitive surgery required revision of nasopharyngeal stenosis release combined with a course of post- operative ‘nasal flossing’. The technique for ‘nasal flossing’ is described and demonstrated in photographs. The patient remained asymptomatic at 3 years using this combined approach, with restoration of olfaction, taste perception and voice quality, significantly enhancing quality of life.
Discussion:
Erosive oral lichen planus is a rare but important presentation in oral medicine. We found ‘nasal flossing’ to be a successful treatment to maintain nasopharyngeal patency following surgical repair of this uncommon condition. We are not aware that this combined approach has previously been described in the published literature.
Conclusions:
Severe erosive oral lichen planus can lead to nasopharyngeal stenosis. Nasopharyngeal stenosis in these patients may be refractive to conventional surgical approaches. ‘Nasal flossing’ is demonstrated to be both practical and acceptable as a surgical adjunct in these difficult to treat cases of recurrent nasopharyngeal stenosis. This report has relevance for all those practicing oral and maxillofacial surgery, ear nose and throat surgery and oral medicine
The double loop mattress suture
An interrupted stitch type with favorable tissue characteristics will reduce local wound complications. We describe a novel high-strength, low-tension repair for the interrupted closure of skin, cartilage, and muscle, the double loop mattress stitch, and compare it experimentally with other interrupted closure methods. The performance of the double loop mattress technique in porcine cartilage and skeletal muscle is compared with the simple, mattress, and loop mattress interrupted sutures in both a novel porcine loading chamber and mechanical model. Wound apposition is assessed by electron microscopy. The performance of the double loop mattress in vivo was confirmed using a series of 805 pediatric laparotomies/laparoscopies. The double loop mattress suture is 3.5 times stronger than the loop mattress in muscle and 1.6 times stronger in cartilage (p ≤ 0.001). Additionally, the double loop mattress reduces tissue tension by 66% compared with just 53% for the loop mattress (p ≤ 0.001). Wound gapping is equal, and wound eversion appears significantly improved (p ≤ 0.001) compared with the loop mattress in vitro. In vivo, the double loop mattress performs as well as the loop mattress and significantly better than the mattress stitch in assessments of wound eversion and dehiscence. There were no episodes of stitch extrusion in our series of patients. The mechanical advantage of its intrinsic pulley arrangement gives the double loop mattress its favorable properties. Wound dehiscence is reduced because this stitch type is stronger and exerts less tension on the tissue than the mattress stitch. We advocate the use of this novel stitch wherever a high-strength, low-tension repair is required. These properties will enhance wound repair, and its application will be useful to surgeons of all disciplines
PITX1, a specificity determinant in the HIF-1α-mediated transcriptional response to hypoxia
Hypoxia is an important developmental cue for multicellular organisms but it is also a contributing factor for several human pathologies, such as stroke, cardiovascular diseases and cancer. In cells, hypoxia activates a major transcriptional program coordinated by the Hypoxia Inducible Factor (HIF) family. HIF can activate more than one hundred targets but not all of them are activated at the same time, and there is considerable cell type variability. In this report we identified the paired-like homeodomain pituitary transcription factor (PITX1), as a transcription factor that helps promote specificity in HIF-1α dependent target gene activation. Mechanistically, PITX1 associates with HIF-1β and it is important for the induction of certain HIF-1 dependent genes but not all. In particular, PITX1 controls the HIF-1α-dependent expression of the histone demethylases; JMJD2B, JMJD2A, JMJD2C and JMJD1B. Functionally, PITX1 is required for the survival and proliferation responses in hypoxia, as PITX1 depleted cells have higher levels of apoptotic markers and reduced proliferation. Overall, our study identified PITX1 as a key specificity factor in HIF-1α dependent responses, suggesting PITX1 as a protein to target in hypoxic cancers
Analysis of Global RNA Synthesis at the Single Cell Level following Hypoxia
Hypoxia or lowering of the oxygen availability is involved in many physiological and pathological processes. At the molecular level, cells initiate a particular transcriptional program in order to mount an appropriate and coordinated cellular response. The cell possesses several oxygen sensor enzymes that require molecular oxygen as cofactor for their activity. These range from prolyl-hydroxylases to histone demethylases. The majority of studies analyzing cellular responses to hypoxia are based on cellular populations and average studies, and as such single cell analysis of hypoxic cells are seldom performed. Here we describe a method of analysis of global RNA synthesis at the single cell level in hypoxia by using Click-iT RNA imaging kits in an oxygen controlled workstation, followed by microscopy analysis and quantification. Using cancer cells exposed to hypoxia for different lengths of time, RNA is labeled and measured in each cell. This analysis allows the visualization of temporal and cell-to-cell changes in global RNA synthesis following hypoxic stress
Hypoxia activates IKK-NF-κB and the immune response in <em>Drosophila melanogaster</em>
Hypoxia, or low oxygen availability, is an important physiological and pathological stimulus for multicellular organisms. Molecularly, hypoxia activates a transcriptional programme directed at restoration of oxygen homoeostasis and cellular survival. In mammalian cells, hypoxia not only activates the HIF (hypoxia-inducible factor) family, but also additional transcription factors such as NF-κB (nuclear factor κB). Here we show that hypoxia activates the IKK–NF-κB [IκB (inhibitor of nuclear factor κB)–NF-κB] pathway and the immune response in Drosophila melanogaster. We show that NF-κB activation is required for organism survival in hypoxia. Finally, we identify a role for the tumour suppressor Cyld, as a negative regulator of NF-κB in response to hypoxia in Drosophila. The results indicate that hypoxia activation of the IKK–NF-κB pathway and the immune response is an important and evolutionary conserved response
Enhanced snoMEN Vectors Facilitate Establishment of GFP–HIF-1α Protein Replacement Human Cell Lines
The snoMEN (snoRNA Modulator of gene ExpressioN) vector technology was developed from a human box C/D snoRNA, HBII-180C, which contains an internal sequence that can be manipulated to make it complementary to RNA targets, allowing knock-down of targeted genes. Here we have screened additional human nucleolar snoRNAs and assessed their application for gene specific knock-downs to improve the efficiency of snoMEN vectors. We identify and characterise a new snoMEN vector, termed 47snoMEN, that is derived from box C/D snoRNA U47, demonstrating its use for knock-down of both endogenous cellular proteins and G/YFP-fusion proteins. Using multiplex 47snoMEM vectors that co-express multiple 47snoMEN in a single transcript, each of which can target different sites in the same mRNA, we document >3-fold increase in knock-down efficiency when compared with the original HBII-180C based snoMEN. The multiplex 47snoMEM vector allowed the construction of human protein replacement cell lines with improved efficiency, including the establishment of novel GFP–HIF-1α replacement cells. Quantitative mass spectrometry analysis confirmed the enhanced efficiency and specificity of protein replacement using the 47snoMEN-PR vectors. The 47snoMEN vectors expand the potential applications for snoMEN technology in gene expression studies, target validation and gene therapy
SINHCAF/FAM60A and SIN3A specifically repress HIF 2α expression
The SIN3A–HDAC (histone deacetylase) complex is a master transcriptional repressor, required for development but often deregulated in disease. Here, we report that the recently identified new component of this complex, SINHCAF (SIN3A and HDAC-associated factor)/FAM60A (family of homology 60A), links the SIN3A–HDAC co-repressor complex function to the hypoxia response. We show that SINHCAF specifically represses HIF-2α mRNA and protein expression, via its interaction with the transcription factor SP1 (specificity protein 1) and recruitment of HDAC1 to the HIF-2α promoter. SINHCAF control over HIF-2α results in functional cellular changes in in vitro angiogenesis and viability. Our analysis reveals an unexpected link between SINHCAF and the regulation of the hypoxia response
Adiponectin-Mediated Analgesia and AntiInflammatory Effects in Rat
The adipose tissue-derived protein, adiponectin, has significant anti-inflammatory properties in a variety of disease conditions. Recent evidence that adiponectin and its receptors (AdipoR1 and AdipoR2) are expressed in central nervous system, suggests that it may also have a central modulatory role in pain and inflammation. This study set out to investigate the effects of exogenously applied recombinant adiponectin (via intrathecal and intraplantar routes; 10–5000 ng) on the development of peripheral inflammation (paw oedema) and pain hypersensitivity in the rat carrageenan model of inflammation. Expression of adiponectin, AdipoR1 and AdipoR2 mRNA and protein was characterised in dorsal spinal cord using real-time polymerase chain reaction (PCR) and Western blotting. AdipoR1 and AdipoR2 mRNA and protein were found to be constitutively expressed in dorsal spinal cord, but no change in mRNA expression levels was detected in response to carrageenan-induced inflammation. Adiponectin mRNA, but not protein, was detected in dorsal spinal cord, although levels were very low. Intrathecal administration of adiponectin, both pre- and 3 hours post-carrageenan, significantly attenuated thermal hyperalgesia and mechanical hypersensitivity. Intrathecal administration of adiponectin post-carrageenan also reduced peripheral inflammation. Intraplantar administration of adiponectin pre-carrageenan dose-dependently reduced thermal hyperalgesia but had no effect on mechanical hypersensitivity and peripheral inflammation. These results show that adiponectin functions both peripherally and centrally at the spinal cord level, likely through activation of AdipoRs to modulate pain and peripheral inflammation. These data suggest that adiponectin receptors may be a novel therapeutic target for pain modulation
Risk of Bowel Obstruction in Patients Undergoing Neoadjuvant Chemotherapy for High-risk Colon Cancer
Objective:
This study aimed to identify risk criteria available before the point of treatment initiation that can be used to stratify the risk of obstruction in patients undergoing neoadjuvant chemotherapy (NAC) for high-risk colon cancer.
Background:
Global implementation of NAC for colon cancer, informed by the FOxTROT trial, may increase the risk of bowel obstruction.
Methods:
A case-control study, nested within an international randomized controlled trial (FOxTROT; ClinicalTrials.gov: NCT00647530). Patients with high-risk operable colon cancer (radiologically staged T3-4 N0-2 M0) that were randomized to NAC and developed large bowel obstruction were identified. First, clinical outcomes were compared between patients receiving NAC in FOxTROT who did and did not develop obstruction. Second, obstructed patients (cases) were age-matched and sex-matched with patients who did not develop obstruction (controls) in a 1:3 ratio using random sampling. Bayesian conditional mixed-effects logistic regression modeling was used to explore clinical, radiologic, and pathologic features associated with obstruction. The absolute risk of obstruction based on the presence or absence of risk criteria was estimated for all patients receiving NAC.
Results:
Of 1053 patients randomized in FOxTROT, 699 received NAC, of whom 30 (4.3%) developed obstruction. Patients underwent care in European hospitals including 88 UK, 7 Danish, and 3 Swedish centers. There was more open surgery (65.4% vs 38.0%, P=0.01) and a higher pR1 rate in obstructed patients (12.0% vs 3.8%, P=0.004), but otherwise comparable postoperative outcomes. In the case-control–matched Bayesian model, 2 independent risk criteria were identified: (1) obstructing disease on endoscopy and/or being unable to pass through the tumor [adjusted odds ratio: 9.09, 95% credible interval: 2.34–39.66] and stricturing disease on radiology or endoscopy (odds ratio: 7.18, 95% CI: 1.84–32.34). Three risk groups were defined according to the presence or absence of these criteria: 63.4% (443/698) of patients were at very low risk (10%).
Conclusions:
Safe selection for NAC for colon cancer can be informed by using 2 features that are available before treatment initiation and identifying a small number of patients with a high risk of preoperative obstruction