37 research outputs found

    Porcine intestinal glycosphingolipids recognized by F6-fimbriated enterotoxigenic Escherichia coli

    Get PDF
    One important virulence factor of enterotoxigenic Escherichia coli is their ability to adhere via fimbrial adhesins to specific receptors located on the intestinal mucosa. Here, the potential glycosphingolipid receptors of enterotoxigenic F6-fimbriated E. coli were examined by binding of purified F6 fimbriae, and F6-expressing bacteria, to glycosphingolipids on thin-layer chromatograms. When intestinal mucosal non-acid glycosphingolipids from single pigs were assayed for F6 binding capacity, a selective interaction with two glycosphingolipids was observed. The binding-active glycosphingolipids were isolated and characterized as lactotriaosylceramide (GlcNAc beta 3Gal beta 4Glc beta 1Cer) and lactotetraosylceramide (Gal beta 3GlcNAc beta 3Gal beta 4Glc beta 1Cer). Further binding assays using a panel of reference glycosphingolipids showed a specific interaction between the F6 fimbriae and a number of neolacto core chain (Gal beta 4GlcNAc) glycosphingolipids. In addition, an occasional binding of the F6 fimbriae to sulfatide, galactosylceramide, lactosylceramide with phytosphingosine and/or hydroxy fatty acids, isoglobotriaosylceramide, gangliotriaosylceramide, and gangliotetraosylceramide was obtained. From the results we conclude that lactotriaosylceramide and lactotetraosylceramide are major porcine intestinal receptors for F6-fimbriated E. coli

    Stress Impairs Skin Barrier Function and Induces α2-3 Linked N-Acetylneuraminic Acid and Core 1 O-Glycans on Skin Mucins in Atlantic Salmon, Salmo salar

    Get PDF
    The skin barrier consists of mucus, primarily comprising highly glycosylated mucins, and the epithelium. Host mucin glycosylation governs interactions with pathogens and stress is associated with impaired epithelial barrier function. We characterized Atlantic salmon skin barrier function during chronic stress (high density) and mucin O-glycosylation changes in response to acute and chronic stress. Fish held at low (LD: 14–30 kg/m3) and high densities (HD: 50-80 kg/m3) were subjected to acute stress 24 h before sampling at 17 and 21 weeks after start of the experiment. Blood parameters indicated primary and secondary stress responses at both sampling points. At the second sampling, skin barrier function towards molecules was reduced in the HD compared to the LD group (Papp mannitol; p < 0.01). Liquid chromatography–mass spectrometry revealed 81 O-glycan structures from the skin. Fish subjected to both chronic and acute stress had an increased proportion of large O-glycan structures. Overall, four of the O-glycan changes have potential as indicators of stress, especially for the combined chronic and acute stress. Stress thus impairs skin barrier function and induces glycosylation changes, which have potential to both affect interactions with pathogens and serve as stress indicators. View Full-TextpublishedVersio

    Helicobacter suis binding to carbohydrates on human and porcine gastric mucins and glycolipids occurs via two modes

    Get PDF
    Helicobacter suis colonizes the stomach of most pigs and is the most prevalent non-Helicobacter pylori Helicobacter species found in the human stomach. In the human host, H. suis contributes to the development of chronic gastritis, peptic ulcer disease and MALT lymphoma, whereas in pigs it is associated with gastritis, decreased growth and ulcers. Here, we demonstrate that the level of H. pylori and H. suis binding to human and pig gastric mucins varies between individuals with species dependent specificity. The binding optimum of H. pylori is at neutral pH whereas that of H. suis has an acidic pH optimum, and the mucins that H. pylori bind to are different than those that H. suis bind to. Mass spectrometric analysis of mucin O-glycans from the porcine mucin showed that individual variation in binding is reflected by a difference in glycosylation; of 109 oligosaccharide structures identified, only 14 were present in all examined samples. H. suis binding to mucins correlated with glycans containing sulfate, sialic acid and terminal galactose. Among the glycolipids present in pig stomach, binding to lactotetraosylceramide (Gal beta 3GlcNAc beta 3Gal beta 4Glc beta 1Cer) was identified, and adhesion to Gal beta 3GlcNAc beta 3Gal beta 4Glc at both acidic and neutral pH was confirmed using other glycoconjugates. Together with that H. suis bound to DNA (used as a proxy for acidic charge), we conclude that H. suis has two binding modes: one to glycans terminating with Gal beta 3GlcNAc, and one to negatively charged structures. Identification of the glycan structures H. suis interacts with can contribute to development of therapeutic strategies alternative to antibiotics

    Erythrocyte and Porcine Intestinal Glycosphingolipids Recognized by F4 Fimbriae of Enterotoxigenic Escherichia coli

    Get PDF
    Enterotoxigenic F4-fimbriated Escherichia coli is associated with diarrheal disease in neonatal and postweaning pigs. The F4 fimbriae mediate attachment of the bacteria to the pig intestinal epithelium, enabling an efficient delivery of diarrhea-inducing enterotoxins to the target epithelial cells. There are three variants of F4 fimbriae designated F4ab, F4ac and F4ad, respectively, having different antigenic and adhesive properties. In the present study, the binding of isolated F4ab, F4ac and F4ad fimbriae, and F4ab/ac/ad-fimbriated E. coli, to glycosphingolipids from erythrocytes and from porcine small intestinal epithelium was examined, in order to get a comprehensive view of the F4-binding glycosphingolipids involved in F4-mediated hemagglutination and adhesion to the epithelial cells of porcine intestine. Specific interactions between the F4ab, F4ac and F4ad fimbriae and both acid and non-acid glycosphingolipids were obtained, and after isolation of binding-active glycosphingolipids and characterization by mass spectrometry and proton NMR, distinct carbohydrate binding patterns were defined for each fimbrial subtype. Two novel glycosphingolipids were isolated from chicken erythrocytes, and characterized as GalNAcα3GalNAcß3Galß4Glcß1Cer and GalNAcα3GalNAcß3Galß4GlcNAcß3Galß4Glcß1Cer. These two compounds, and lactosylceramide (Galß4Glcß1Cer) with phytosphingosine and hydroxy fatty acid, were recognized by all three variants of F4 fimbriae. No binding of the F4ad fimbriae or F4ad-fimbriated E. coli to the porcine intestinal glycosphingolipids occurred. However, for F4ab and F4ac two distinct binding patterns were observed. The F4ac fimbriae and the F4ac-expressing E. coli selectively bound to galactosylceramide (Galß1Cer) with sphingosine and hydroxy 24:0 fatty acid, while the porcine intestinal glycosphingolipids recognized by F4ab fimbriae and the F4ab-fimbriated bacteria were characterized as galactosylceramide, sulfatide (SO3-3Galß1Cer), sulf-lactosylceramide (SO3-3Galß4Glcß1Cer), and globotriaosylceramide (Galα4Galß4Glcß1Cer) with phytosphingosine and hydroxy 24:0 fatty acid. Finally, the F4ad fimbriae and the F4ad-fimbriated E. coli, but not the F4ab or F4ac subtypes, bound to reference gangliotriaosylceramide (GalNAcß4Galß4Glcß1Cer), gangliotetraosylceramide (Galß3GalNAcß4Galß4Glcß1Cer), isoglobotriaosylceramide (Galα3Galß4Glcß1Cer), and neolactotetraosylceramide (Galß4GlcNAcß3Galß4Glcß1Cer)

    Studies on glycosphingolipids in infection, immunity and differentiation

    Get PDF
    Cell surface glycoconjugates play a role in many biological processes such as responses to microbial infections, cell-cell interactions, differentiation, and inflammatory responses. The present work is focused on structural characterization of glycosphingolipids with potential roles in adhesion of Helicobacter pylori and Vibrio cholerae, differentiation of human pluripotent stem cells, and as blood group determinants. In the first study, the structural binding requirements of Helicobacter pylori BabA adhesin revealed a different carbohydrate binding potential than previously defined. Adhesion of H. pylori generalist, specialist and BabA deletion mutant strains were examined using mixtures of glycosphingolipids. An unexpected binding by specialist and generalist H. pylori to the hexaosylceramide region of porcine intestinal non-acid glycosphingolipids was found. After isolation and characterization by mass spectrometry and proton NMR, the binding-active glycosphingolipid was determined as Globo H hexaosylceramide (H type 4). Further binding studies demonstrated that the generalist strain, but not the specialist strain, also recognized Globo A heptaosylceramide (A type 4). Non-secretors have an increased risk of peptic ulcer disease although they express little or no H type 1 sequences, and thus no Leb. However, these individuals have a functional FUT1 enzyme that may produce the Globo H sequence, suggesting that Globo H hexaosylceramide might have a role in H. pylori adhesion to the gastric epithelium of non-secretor individuals. In the second study the carbohydrate binding potential of Vibrio cholerae was investigated. Binding-active glycosphingolipids, detected by the thin-layer chromatogram binding assay, were isolated and characterized by antibody binding, mass spectrometry and proton NMR. Thereby, three different binding modes were identified; the first was complex glycosphingo-lipids with GlcNAcβ3Galβ3/4GlcNAc sequence, the second glycosphingolipids with terminal Galα3Galα3Gal sequence, and the third lactosylceramide and related glycosphingolipids. V. cholerae with non-functional chitin binding protein GbpA bound to glycosphingolipids in the same manner as the wild type bacteria, demonstrating that the GbpA is not involved in glycosphingolipid recognition. In the third study the non-acid glycosphingolipids of human embryonic stem cells were structurally characterized. Chromatogram binding assays, mass spectrometry and proton NMR demonstrated the presence of type 2 core chain glycosphingolipids (neolactotetraosyl-ceramide, H type 2 pentaosylceramide, Lex pentaosylceramide, and Ley hexaosylceramide), and blood group A type 1 hexaosylceramide, along with the previously characterized glycosphingolipids with type 1 and type 4 core chains. Thus, the glycosphingolipid diversity of human embryonic stem cells is more complex than previously appreciated. The PX2 antigen is assumed to belong to the GLOB blood group system and has until further notice been assigned to that blood group. However the enzymatic machinery involved in PX2 synthesis has not been determined. In the fourth study, glycosphingolipids isolated from blood group AP1k erythrocytes, App erythrocytes and B3GALNT1 transfected MEG-01 cells were characterized by antibody binding and mass spectrometry. The B3GALNT1 transfected MEG-01 cells had an increased expression of PX2. No P antigen or PX2 were found in the AP1k erythrocytes, while the App erythrocytes expressed PX2, but no P1 and P antigens. The conclusion from these experiments is that the P synthase also is responsible for synthesis of the PX2 antigen

    Helicobacter pylori SabA binding gangliosides of human stomach

    No full text
    Adhesion of Helicobacter pylori to the gastric mucosa is a prerequisite for the pathogenesis of H. pylori related diseases. In this study, we investigated the ganglioside composition of human stomach as the target for attachment mediated by H. pylori SabA (sialic acid binding adhesin). Acid glycosphingolipids were isolated from human stomach and separated into subfractions, which were characterized by mass spectrometry and by binding of antibodies, bacteria, and Solanum tuberosum lectin. H. pylori SabA binding gangliosides were characterized as Neu5Acα3-neolactohexaosylceramide and Neu5Acα3-neolactooctaosylceramide, while the other acid human stomach glycosphingolipids characterized (sulfatide and the gangliosides GM3, GD3, GM1, Neu5Acα3-neolactotetraosylceramide, GD1a and GD1b) were not recognized by the bacteria. Defining H. pylori binding glycosphingolipids of the human gastric mucosa will be useful to specifically target this microbe-host interaction for therapeutic intervention

    Mucus-Pathogen Interactions in the Gastrointestinal Tract of Farmed Animals

    No full text
    Gastrointestinal infections cause significant challenges and economic losses in animal husbandry. As pathogens becoming resistant to antibiotics are a growing concern worldwide, alternative strategies to treat infections in farmed animals are necessary in order to decrease the risk to human health and increase animal health and productivity. Mucosal surfaces are the most common route used by pathogens to enter the body. The mucosal surface that lines the gastrointestinal tract is covered by a continuously secreted mucus layer that protects the epithelial surface. The mucus layer is the first barrier the pathogen must overcome for successful colonization, and is mainly composed of densely glycosylated proteins called mucins. The vast array of carbohydrate structures present on the mucins provide an important setting for host-pathogen interactions. This review summarizes the current knowledge on gastrointestinal mucins and their role during infections in farmed animals. We examine the interactions between mucins and animal pathogens, with a focus on how pathogenic bacteria can modify the mucin environment in the gut, and how this in turn affects pathogen adhesion and growth. Finally, we discuss analytical challenges and complexities of the mucus-based defense, as well as its potential to control infections in farmed animals

    Identification of the molecular and genetic basis of PX2, a glycosphingolipid blood group antigen lacking on globoside-deficient erythrocytes.

    No full text
    The x2 glycosphingolipid is expressed on erythrocytes from individuals of all common blood group phenotypes and elevated on cells of the rare P/P1/P(k)-negative p blood group phenotype. Globoside or P antigen is synthesized by UDP-N-acetylgalactosamine:globotriaosylceramide 3-β-N-acetylgalactosaminyltransferase encoded by B3GALNT1. It is the most abundant non-acid glycosphingolipid on erythrocytes and displays the same terminal disaccharide, GalNAcβ3Gal, as x2. We encountered a patient with mutations in B3GALNT1 causing the rare P-deficient P1 (k) phenotype and whose pre-transfusion plasma was unexpectedly incompatible with p erythrocytes. The same phenomenon was also noted in seven other unrelated P-deficient individuals. Thin-layer chromatography, mass spectrometry and flow cytometry was used to show that the naturally-occurring antibodies made by p individuals recognise x2 and sialylated forms of x2, while x2 is lacking on P-deficient erythrocytes. Overexpression of B3GALNT1 resulted in synthesis of both P and x2. Knockdown experiments with siRNA against B3GALNT1 diminished x2 levels. We conclude that x2 fulfills blood group criteria and is synthesized by β1,3GalNAc-T1. Based on this linkage, we proposed that x2 joins P in the GLOB blood group system (ISBT 028) and is renamed PX2 (GLOB2). Thus, in the absence of a functional P synthase neither P nor PX2 are formed. As a consequence, naturally-occurring anti-P and anti-PX2 can be made. Until the clinical significance of anti-PX2 is known, we also recommend that rare P1 (k) or P2 (k) RBC units are preferentially selected for transfusion to P(k) patients since p RBCs may pose a risk for hemolytic transfusion reactions due to their elevated PX2 levels

    <i>Aeromonas salmonicida</i> binds α2-6 linked sialic acid, which is absent among the glycosphingolipid repertoires from skin, gill, stomach, pyloric caecum, and intestine

    No full text
    Carbohydrates can both protect against infection and act as targets promoting infection. Mucins are major components of the slimy mucus layer covering the fish epithelia. Mucins can act as decoys for intimate pathogen interaction with the host afforded by binding to glycosphingolipids in the host cell membrane. We isolated and characterized glycosphingolipids from Atlantic salmon skin, gill, stomach, pyloric caeca, and intestine. We characterized the glycosphingolipids using liquid chromatography – mass spectrometry and tandem mass spectrometry and the glycan repertoire was compared with the glycan repertoire of mucins from the same epithelia. We also investigated Aeromonas salmonicida binding using chromatogram and microtiter well based binding assays. We identified 29 glycosphingolipids. All detected acid glycans were of the ganglio-series (unless shorter) and showed a high degree of polysialylation. The non-acid glycans were mostly composed of the neolacto, globo, and ganglio core structures. The glycosphingolipid repertoire differed between epithelia and the proportion of the terminal moieties of the glycosphingolipids did not reflect the terminal moieties on the mucins from the same epithelia. A. salmonicida did not bind the Atlantic salmon glycosphingolipids. Instead, we identified that A. salmonicida binding to sialic acid occurred to α2–6 Neu5Ac but not to α2–3 Neu5Ac. α2–6 Neu5Ac was present on mucins whereas mainly α2–3 Neu5Ac was found on the glycosphingolipids, explaining the difference in A. salmonicida binding ability between these host glycoconjugates. A. salmonicida´s ability to bind to Atlantic salmon mucins, but not the glycosphingolipids, is likely part of the host defence against this pathogen.</p
    corecore