254 research outputs found

    Gas Phase Production and Loss of Isoprene Epoxydiols

    Get PDF
    Isoprene epoxydiols (IEPOX) form in high yields from the OH-initiated oxidation of isoprene under low-NO conditions. These compounds contribute significantly to secondary organic aerosol formation. Their gas-phase chemistry has, however, remained largely unexplored. In this study, we characterize the formation of IEPOX isomers from the oxidation of isoprene by OH. We find that cis-β- and trans-β-IEPOX are the dominant isomers produced, and that they are created in an approximate ratio of 1:2 from the low-NO oxidation of isoprene. Three isomers of IEPOX, including cis-β- and trans-β, were synthesized and oxidized by OH in environmental chambers under high- and low-NO conditions. We find that IEPOX reacts with OH at 299 K with rate coefficients of (0.84 ± 0.07) × 10^(–11), (1.52 ± 0.07) × 10^(–11), and (0.98 ± 0.05) × 10^(–11) cm^3 molecule^(–1) s^(–1) for the δ1, cis-β, and trans-β isomers. Finally, yields of the first-generation products of IEPOX + OH oxidation were measured, and a new mechanism of IEPOX oxidation is proposed here to account for the observed products. The substantial yield of glyoxal and methylglyoxal from IEPOX oxidation may help explain elevated levels of those compounds observed in low-NO environments with high isoprene emissions

    Organic nitrate chemistry and its implications for nitrogen budgets in an isoprene- and monoterpene-rich atmosphere: constraints from aircraft (SEAC^4RS) and ground-based (SOAS) observations in the Southeast US

    Get PDF
    Formation of organic nitrates (RONO_2) during oxidation of biogenic volatile organic compounds (BVOCs: isoprene, monoterpenes) is a significant loss pathway for atmospheric nitrogen oxide radicals (NO_x), but the chemistry of RONO_2 formation and degradation remains uncertain. Here we implement a new BVOC oxidation mechanism (including updated isoprene chemistry, new monoterpene chemistry, and particle uptake of RONO_2) in the GEOS-Chem global chemical transport model with  ∼  25  ×  25 km^2 resolution over North America. We evaluate the model using aircraft (SEAC^4RS) and ground-based (SOAS) observations of NO_x, BVOCs, and RONO_2 from the Southeast US in summer 2013. The updated simulation successfully reproduces the concentrations of individual gas- and particle-phase RONO_2 species measured during the campaigns. Gas-phase isoprene nitrates account for 25–50 % of observed RONO_2 in surface air, and we find that another 10 % is contributed by gas-phase monoterpene nitrates. Observations in the free troposphere show an important contribution from long-lived nitrates derived from anthropogenic VOCs. During both campaigns, at least 10 % of observed boundary layer RONO_2 were in the particle phase. We find that aerosol uptake followed by hydrolysis to HNO_3 accounts for 60 % of simulated gas-phase RONO_2 loss in the boundary layer. Other losses are 20 % by photolysis to recycle NO_x and 15 % by dry deposition. RONO_2 production accounts for 20 % of the net regional NO_x sink in the Southeast US in summer, limited by the spatial segregation between BVOC and NO_x emissions. This segregation implies that RONO_2 production will remain a minor sink for NO_x in the Southeast US in the future even as NO_x emissions continue to decline

    Formation of Low Volatility Organic Compounds and Secondary Organic Aerosol from Isoprene Hydroxyhydroperoxide Low-NO Oxidation

    Get PDF
    Gas-phase low volatility organic compounds (LVOC), produced from oxidation of isoprene 4-hydroxy-3-hydroperoxide (4,3-ISOPOOH) under low-NO conditions, were observed during the FIXCIT chamber study. Decreases in LVOC directly correspond to appearance and growth in secondary organic aerosol (SOA) of consistent elemental composition, indicating that LVOC condense (at OA below 1 μg m^(–3)). This represents the first simultaneous measurement of condensing low volatility species from isoprene oxidation in both the gas and particle phases. The SOA formation in this study is separate from previously described isoprene epoxydiol (IEPOX) uptake. Assigning all condensing LVOC signals to 4,3-ISOPOOH oxidation in the chamber study implies a wall-loss corrected non-IEPOX SOA mass yield of ∼4%. By contrast to monoterpene oxidation, in which extremely low volatility VOC (ELVOC) constitute the organic aerosol, in the isoprene system LVOC with saturation concentrations from 10^(–2) to 10 μg m^(–3) are the main constituents. These LVOC may be important for the growth of nanoparticles in environments with low OA concentrations. LVOC observed in the chamber were also observed in the atmosphere during SOAS-2013 in the Southeastern United States, with the expected diurnal cycle. This previously uncharacterized aerosol formation pathway could account for ∼5.0 Tg yr^(–1) of SOA production, or 3.3% of global SOA

    Rapid deposition of oxidized biogenic compounds to a temperate forest

    Get PDF
    We report fluxes and dry deposition velocities for 16 atmospheric compounds above a southeastern United States forest, including: hydrogen peroxide (H_2O_2), nitric acid (HNO_3), hydrogen cyanide (HCN), hydroxymethyl hydroperoxide, peroxyacetic acid, organic hydroxy nitrates, and other multifunctional species derived from the oxidation of isoprene and monoterpenes. The data suggest that dry deposition is the dominant daytime sink for small, saturated oxygenates. Greater than 6 wt %C emitted as isoprene by the forest was returned by dry deposition of its oxidized products. Peroxides account for a large fraction of the oxidant flux, possibly eclipsing ozone in more pristine regions. The measured organic nitrates comprise a sizable portion (15%) of the oxidized nitrogen input into the canopy, with HNO_3 making up the balance. We observe that water-soluble compounds (e.g., strong acids and hydroperoxides) deposit with low surface resistance whereas compounds with moderate solubility (e.g., organic nitrates and hydroxycarbonyls) or poor solubility (e.g., HCN) exhibited reduced uptake at the surface of plants. To first order, the relative deposition velocities of water-soluble compounds are constrained by their molecular diffusivity. From resistance modeling, we infer a substantial emission flux of formic acid at the canopy level (∼1 nmol m^(−2)⋅s^(−1)). GEOS−Chem, a widely used atmospheric chemical transport model, currently underestimates dry deposition for most molecules studied in this work. Reconciling GEOS−Chem deposition velocities with observations resulted in up to a 45% decrease in the simulated surface concentration of trace gases

    Isoprene NO_3 Oxidation Products from the RO_2 + HO_2 Pathway

    Get PDF
    We describe the products of the reaction of the hydroperoxy radical (HO_2) with the alkylperoxy radical formed following addition of the nitrate radical (NO_3) and O_2 to isoprene. NO_3 adds preferentially to the C_1 position of isoprene (>6 times more favorably than addition to C_4), followed by the addition of O_2 to produce a suite of nitrooxy alkylperoxy radicals (RO_2). At an RO_2 lifetime of ∼30 s, δ-nitrooxy and β-nitrooxy alkylperoxy radicals are present in similar amounts. Gas-phase product yields from the RO_2 + HO_2 pathway are identified as 0.75–0.78 isoprene nitrooxy hydroperoxide (INP), 0.22 methyl vinyl ketone (MVK) + formaldehyde (CH_2O) + hydroxyl radical (OH) + nitrogen dioxide (NO_2), and 0–0.03 methacrolein (MACR) + CH_2O + OH + NO_2. We further examined the photochemistry of INP and identified propanone nitrate (PROPNN) and isoprene nitrooxy hydroxyepoxide (INHE) as the main products. INHE undergoes similar heterogeneous chemistry as isoprene dihydroxy epoxide (IEPOX), likely contributing to atmospheric secondary organic aerosol formation

    Organic nitrate chemistry and its implications for nitrogen budgets in an isoprene- and monoterpene-rich atmosphere: constraints from aircraft (SEAC^4RS) and ground-based (SOAS) observations in the Southeast US

    Get PDF
    Formation of organic nitrates (RONO_2) during oxidation of biogenic volatile organic compounds (BVOCs: isoprene, monoterpenes) is a significant loss pathway for atmospheric nitrogen oxide radicals (NO_x), but the chemistry of RONO_2 formation and degradation remains uncertain. Here we implement a new BVOC oxidation mechanism (including updated isoprene chemistry, new monoterpene chemistry, and particle uptake of RONO_2) in the GEOS-Chem global chemical transport model with  ∼  25  ×  25 km^2 resolution over North America. We evaluate the model using aircraft (SEAC^4RS) and ground-based (SOAS) observations of NO_x, BVOCs, and RONO_2 from the Southeast US in summer 2013. The updated simulation successfully reproduces the concentrations of individual gas- and particle-phase RONO_2 species measured during the campaigns. Gas-phase isoprene nitrates account for 25–50 % of observed RONO_2 in surface air, and we find that another 10 % is contributed by gas-phase monoterpene nitrates. Observations in the free troposphere show an important contribution from long-lived nitrates derived from anthropogenic VOCs. During both campaigns, at least 10 % of observed boundary layer RONO_2 were in the particle phase. We find that aerosol uptake followed by hydrolysis to HNO_3 accounts for 60 % of simulated gas-phase RONO_2 loss in the boundary layer. Other losses are 20 % by photolysis to recycle NO_x and 15 % by dry deposition. RONO_2 production accounts for 20 % of the net regional NO_x sink in the Southeast US in summer, limited by the spatial segregation between BVOC and NO_x emissions. This segregation implies that RONO_2 production will remain a minor sink for NO_x in the Southeast US in the future even as NO_x emissions continue to decline

    Evidence of Resistance to Cry34/35Ab1 Corn by Western Corn Rootworm (Coleoptera: Chrysomelidae): Root Injury in the Field and Larval Survival in Plant-Based Bioassays

    Get PDF
    Western corn rootworm, Diabrotica virgifera virgifera LeConte (Coleoptera: Chrysomelidae), is a serious pest of corn in the United States, and recent management of western corn rootworm has included planting of Bt corn. Beginning in 2009, western corn rootworm populations with resistance to Cry3Bb1 corn and mCry3A corn were found in Iowa and elsewhere. To date, western corn rootworm populations have remained susceptible to corn producing Bt toxin Cry34/35Ab1. In this study, we used single-plant bioassays to test field populations of western corn rootworm for resistance to Cry34/35Ab1 corn, Cry3Bb1 corn, and mCry3A corn. Bioassays included nine rootworm populations collected from fields where severe injury to Bt corn had been observed and six control populations that had never been exposed to Bt corn. We found incomplete resistance to Cry34/35Ab1 corn among field populations collected from fields where severe injury to corn producing Cry34/35Ab1, either singly or as a pyramid, had been observed. Additionally, resistance to Cry3Bb1 corn and mCry3A corn was found among the majority of populations tested. These first cases of resistance to Cry34/35Ab1 corn, and the presence of resistance to multiple Bt toxins by western corn rootworm, highlight the potential vulnerability of Bt corn to the evolution of resistance by western corn rootworm. The use of more diversified management practices, in addition to insect resistance management, likely will be essential to sustain the viability of Bt corn for management of western corn rootworm

    An analysis of fast photochemistry over high northern latitudes during spring and summer using in-situ observations from ARCTAS and TOPSE

    Get PDF
    Observations of chemical constituents and meteorological quantities obtained during the two Arctic phases of the airborne campaign ARCTAS (Arctic Research of the Composition of the Troposphere from Aircraft and Satellites) are analyzed using an observationally constrained steady state box model. Measurements of OH and HO2 from the Penn State ATHOS instrument are compared to model predictions. Forty percent of OH measurements below 2 km are at the limit of detection during the spring phase (ARCTAS-A). While the median observed-to-calculated ratio is near one, both the scatter of observations and the model uncertainty for OH are at the magnitude of ambient values. During the summer phase (ARCTAS-B), model predictions of OH are biased low relative to observations and demonstrate a high sensitivity to the level of uncertainty in NO observations. Predictions of HO2 using observed CH2O and H2O2 as model constraints are up to a factor of two larger than observed. A temperature-dependent terminal loss rate of HO2 to aerosol recently proposed in the literature is shown to be insufficient to reconcile these differences. A comparison of ARCTAS-A to the high latitude springtime portion of the 2000 TOPSE campaign (Tropospheric Ozone Production about the Spring Equinox) shows similar meteorological and chemical environments with the exception of peroxides; observations of H2O2 during ARCTAS-A were 2.5 to 3 times larger than those during TOPSE. The cause of this difference in peroxides remains unresolved and has important implications for the Arctic HOx budget. Unconstrained model predictions for both phases indicate photochemistry alone is unable to simultaneously sustain observed levels of CH2O and H2O2; however when the model is constrained with observed CH2O, H2O2 predictions from a range of rainout parameterizations bracket its observations. A mechanism suitable to explain observed concentrations of CH2O is uncertain. Free tropospheric observations of acetaldehyde (CH3CHO) are 2–3 times larger than its predictions, though constraint of the model to those observations is sufficient to account for less than half of the deficit in predicted CH2O. The box model calculates gross O3 formation during spring to maximize from 1–4 km at 0.8 ppbv d−1, in agreement with estimates from TOPSE, and a gross production of 2–4 ppbv d−1 in the boundary layer and upper troposphere during summer. Use of the lower observed levels of HO2 in place of model predictions decreases the gross production by 25–50%. Net O3 production is near zero throughout the ARCTAS-A troposphere, and is 1–2 ppbv in the boundary layer and upper altitudes during ARCTAS-B

    Mental toughness and transitions to high school and to undergraduate study

    Get PDF
    Mental toughness can be conceptualised as a set of attributes that allow people to deal effectively with challenges, stressors and pressure. Recent work has suggested that it may be a valuable construct to consider within educational settings. The current studies explored the associations between mental toughness and educational transitions. Study 1 examined the relationships between mental toughness and concerns about moving to a new school in 105 children aged 12–13 years of age. The results revealed significant relationships between several aspects of mental toughness, but particularly confidence in abilities, and children’s concerns. Study 2 examined the relationships between mental toughness and adjustment to university in 200 undergraduate students at various stages of their course. The results revealed a role for several aspects of mental toughness; commitment, control of life, control of emotion, confidence in abilities and interpersonal confidence. The results are discussed in terms of implications for educational practice. It is suggested that measures of mental toughness could be used to identify individuals who may benefit from additional support during transition to a new school or to university, and that future research should explore the potential benefits of mental toughness training. © 2016 Informa UK Limited, trading as Taylor & Francis Group
    • …
    corecore