199 research outputs found

    Development and Characterization of an Air-Cooled Loop Heat Pipe With a Wick in the Condenser

    Get PDF
    Thermal management of modern electronics is rapidly becoming a critical bottleneck of their computational performance. Air-cooled heat sinks offer ease and flexibility in installation and are currently the most widely used solution for cooling electronics. We report the characterization of a novel loop heat pipe (LHP) with a wick in the condenser, developed for the integration into an air-cooled heat sink. The evaporator and condenser are planar (102 mm × 102 mm footprint) and allow for potential integration of multiple, stacked condensers. The condenser wick is used to separate the liquid and vapor phases during condensation by capillary menisci and enables the use of multiple condensers with equal condensation behavior and performance. In this paper, the thermal–fluidic cycle is outlined, and the requirements to generate capillary pressure in the condenser are discussed. The LHP design to fulfill the requirements is then described, and the experimental characterization of a single-condenser version of the LHP is reported. The thermal performance was dependent on the fan speed and the volume of the working fluid; a thermal resistance of 0.177  °C/W was demonstrated at a heat load of 200 W, fan speed of 5000 rpm and fluid volume of 67 mL. When the LHP was filled with the working fluid to the proper volume, capillary pressure in the condenser was confirmed for all heat loads tested, with a maximum of 3.5 kPa at 200 W. When overfilled with the working fluid, the condenser was flooded with liquid, preventing the formation of capillary pressure and significantly increasing the LHP thermal resistance. This study provides the detailed thermal–fluidic considerations needed to generate capillary pressure in the condenser for controlling the condensation behavior and serves as the basis of developing multiple-condenser LHPs with low thermal resistance.United States. Defense Advanced Research Projects Agency (W31P4Q-09-1-0007

    BioPS: System for screening and assessment of biofuel-production potential of cyanobacteria

    Get PDF
    Cyanobacteria are one of the target groups of organisms explored for production of free fatty acids (FFAs) as biofuel precursors. Experimental evaluation of cyanobacterial potential for FFA production is costly and time consuming. Thus, computational approaches for comparing and ranking cyanobacterial strains for their potential to produce biofuel based on the characteristics of their predicted proteomes can be of great importance. Results To enable such comparison and ranking, and to assist biotechnology developers and researchers in selecting strains more likely to be successfully engineered for the FFA production, we developed the Biofuel Producer Screen (BioPS) platform (http://www.cbrc. kaust.edu.sa/biops). BioPS relies on the estimation of the predicted proteome makeup of cyanobacterial strains to produce and secrete FFAs, based on the analysis of well-studied cyanobacterial strains with known FFA production profiles. The system links results back to various external repositories such as KEGG, UniProt and GOLD, making it easier for users to explore additional related information. Conclusion To our knowledge, BioPS is the first tool that screens and evaluates cyanobacterial strains for their potential to produce and secrete FFAs based on strain\u27s predicted proteome characteristics, and rank strains based on that assessment. We believe that the availability of such a platform (comprising both a prediction tool and a repository of pre-evaluated stains) would be of interest to biofuel researchers. The BioPS system will be updated annually with information obtained from newly sequenced cyanobacterial genomes as they become available, as well as with new genes that impact FFA production or secretion

    Cranial nerve outcomes in regionally recurrent head & neck melanoma after sentinel lymph node biopsy

    Full text link
    Peer Reviewedhttps://deepblue.lib.umich.edu/bitstream/2027.42/156007/1/lary28243.pdfhttps://deepblue.lib.umich.edu/bitstream/2027.42/156007/2/lary28243_am.pd

    Divergent Serpentoviruses in Free-Ranging Invasive Pythons and Native Colubrids in Southern Florida, United States

    Get PDF
    Burmese python (Python bivittatus) is an invasive snake that has significantly affected ecosystems in southern Florida, United States. Aside from direct predation and competition, invasive species can also introduce nonnative pathogens that can adversely affect native species. The subfamily Serpentovirinae (order Nidovirales) is composed of positive-sense RNA viruses primarily found in reptiles. Some serpentoviruses, such as shingleback nidovirus, are associated with mortalities in wild populations, while others, including ball python nidovirus and green tree python nidovirus can be a major cause of disease and mortality in captive animals. To determine if serpentoviruses were present in invasive Burmese pythons in southern Florida, oral swabs were collected from both free-ranging and long-term captive snakes. Swabs were screened for the presence of serpentovirus by reverse transcription PCR and sequenced. A total serpentovirus prevalence of 27.8% was detected in 318 python samples. Of the initial swabs from 172 free-ranging pythons, 42 (24.4%) were positive for multiple divergent viral sequences comprising four clades across the sampling range. Both sex and snout-vent length were statistically significant factors in virus prevalence, with larger male snakes having the highest prevalence. Sampling location was statistically significant in circulating virus sequence. Mild clinical signs and lesions consistent with serpentovirus infection were observed in a subset of sampled pythons. Testing of native snakes (n = 219, 18 species) in part of the python range found no evidence of python virus spillover; however, five individual native snakes (2.3%) representing three species were PCR positive for unique, divergent serpentoviruses. Calculated pairwise uncorrected distance analysis indicated the newly discovered virus sequences likely represent three novel genera in the subfamily Serpentovirinae. This study is the first to characterize serpentovirus in wild free-ranging pythons or in any free-ranging North America reptile. Though the risk these viruses pose to the invasive and native species is unknown, the potential for spillover to native herpetofauna warrants further investigation

    Double Spin Asymmetry of Electrons from Heavy Flavor Decays in p+p Collisions at sqrt(s)=200 GeV

    Full text link
    We report on the first measurement of double-spin asymmetry, A_LL, of electrons from the decays of hadrons containing heavy flavor in longitudinally polarized p+p collisions at sqrt(s)=200 GeV for p_T= 0.5 to 3.0 GeV/c. The asymmetry was measured at mid-rapidity (|eta|<0.35) with the PHENIX detector at the Relativistic Heavy Ion Collider. The measured asymmetries are consistent with zero within the statistical errors. We obtained a constraint for the polarized gluon distribution in the proton of |Delta g/g(log{_10}x= -1.6^+0.5_-0.4, {mu}=m_T^c)|^2 < 0.033 (1 sigma), based on a leading-order perturbative-quantum-chromodynamics model, using the measured asymmetry.Comment: 385 authors, 17 pages, 15 figures, 5 tables. Submitted to Phys. Rev. D. Plain text data tables for the points plotted in figures for this and previous PHENIX publications are (or will be) publicly available at http://www.phenix.bnl.gov/papers.htm

    Upsilon (1S+2S+3S) production in d+Au and p+p collisions at sqrt(s_NN)=200 GeV and cold-nuclear matter effects

    Full text link
    The three Upsilon states, Upsilon(1S+2S+3S), are measured in d+Au and p+p collisions at sqrt(s_NN)=200 GeV and rapidities 1.2<|y|<2.2 by the PHENIX experiment at the Relativistic Heavy-Ion Collider. Cross sections for the inclusive Upsilon(1S+2S+3S) production are obtained. The inclusive yields per binary collision for d+Au collisions relative to those in p+p collisions (R_dAu) are found to be 0.62 +/- 0.26 (stat) +/- 0.13 (syst) in the gold-going direction and 0.91 +/- 0.33 (stat) +/- 0.16 (syst) in the deuteron-going direction. The measured results are compared to a nuclear-shadowing model, EPS09 [JHEP 04, 065 (2009)], combined with a final-state breakup cross section, sigma_br, and compared to lower energy p+A results. We also compare the results to the PHENIX J/psi results [Phys. Rev. Lett. 107, 142301 (2011)]. The rapidity dependence of the observed Upsilon suppression is consistent with lower energy p+A measurements.Comment: 495 authors, 11 pages, 9 figures, 5 tables. Submitted to Phys. Rev. C. Plain text data tables for the points plotted in figures for this and previous PHENIX publications are (or will be) publicly available at http://www.phenix.bnl.gov/papers.htm

    Measurements of elliptic and triangular flow in high-multiplicity 3^{3}He++Au collisions at sNN=200\sqrt{s_{_{NN}}}=200 GeV

    Full text link
    We present the first measurement of elliptic (v2v_2) and triangular (v3v_3) flow in high-multiplicity 3^{3}He++Au collisions at sNN=200\sqrt{s_{_{NN}}}=200 GeV. Two-particle correlations, where the particles have a large separation in pseudorapidity, are compared in 3^{3}He++Au and in pp++pp collisions and indicate that collective effects dominate the second and third Fourier components for the correlations observed in the 3^{3}He++Au system. The collective behavior is quantified in terms of elliptic v2v_2 and triangular v3v_3 anisotropy coefficients measured with respect to their corresponding event planes. The v2v_2 values are comparable to those previously measured in dd++Au collisions at the same nucleon-nucleon center-of-mass energy. Comparison with various theoretical predictions are made, including to models where the hot spots created by the impact of the three 3^{3}He nucleons on the Au nucleus expand hydrodynamically to generate the triangular flow. The agreement of these models with data may indicate the formation of low-viscosity quark-gluon plasma even in these small collision systems.Comment: 630 authors, 9 pages, 4 figures, 2 tables. v2 is the version accepted for publication by Physical Review Letters. Plain text data tables for the points plotted in figures for this and previous PHENIX publications are (or will be) publicly available at http://www.phenix.bnl.gov/papers.htm
    corecore