41 research outputs found

    TCTP in Development and Cancer

    Get PDF
    The translationally controlled tumor protein (TCTP) is highly conserved among animal species. It is widely expressed in many different tissues. It is involved in regulating many fundamental processes, such as cell proliferation and growth, apoptosis, pluripotency, and the cell cycle. Hence, it is not surprising that it is essential for normal development and, if misregulated, can lead to cancer. Provided herein is an overview of the diverse functions of TCTP, with a focus on development. Furthermore, we discuss possible ways by which TCTP misregulation or mutation could result in cancer

    Histone H3 lysine 4 methylation is associated with the transcriptional reprogramming efficiency of somatic nuclei by oocytes.

    Get PDF
    BACKGROUND: When the nuclei of mammalian somatic cells are transplanted to amphibian oocytes in the first meiotic prophase, they are rapidly induced to begin transcribing several pluripotency genes, including Sox2 and Oct4. The more differentiated the donor cells of the nuclei, the longer it takes for the pluripotency genes to be activated after the nuclear transfer to oocytes. We have used this effect in order to investigate the role of histone modifications in this example of nuclear reprogramming. RESULTS: Reverse transcription polymerase chain reaction analysis shows that the transcriptional reprogramming of pluripotency genes, such as Sox2 and Oct4, takes place in transplanted nuclei from C3H10T1/2 cells and from newly differentiated mouse embryonic stem cells. We find that the reprogramming of 10T1/2 nuclei is accompanied by an increased phosphorylation, an increased methylation and a rapidly reduced acetylation of several amino acids in H3 and other histones. These results are obtained by the immunofluorescent staining of transplanted nuclei and by Western blot analysis. We have also used chromatin immunoprecipitation analysis to define histone modifications associated with the regulatory or coding regions of pluripotency genes in transplanted nuclei. Histone phosphorylation is increased and histone acetylation is decreased in several regulatory and gene coding regions. An increase of histone H3 lysine 4 dimethylation (H3K4 me2) is seen in the regulatory regions and gene coding region of pluripotency genes in reprogrammed nuclei. Furthermore, histone H3 lysine 4 trimethylation (H3K4 me3) is observed more strongly in the regulatory regions of pluripotency genes in transplanted nuclei that are rapidly reprogrammed than in nuclei that are reprogrammed slowly and are not seen in beta-globin, a gene that is not reprogrammed. When 10T1/2 nuclei are incubated in Xenopus oocyte extracts, histone H3 serine 10 (H3S10) is strongly phosphorylated within a few hours. Immunodepletion of Aurora B prevents this phosphorylation. CONCLUSION: We conclude that H3K4 me2 and me3 are likely to be important for the efficient reprogramming of pluripotency genes in somatic nuclei by amphibian oocytes and that Aurora B kinase is required for H3S10 phosphorylation which is induced in transplanted somatic cell nuclei.RIGHTS : This article is licensed under the BioMed Central licence at http://www.biomedcentral.com/about/license which is similar to the 'Creative Commons Attribution Licence'. In brief you may : copy, distribute, and display the work; make derivative works; or make commercial use of the work - under the following conditions: the original author must be given credit; for any reuse or distribution, it must be made clear to others what the license terms of this work are

    HIRA dependent H3.3 deposition is required for transcriptional reprogramming following nuclear transfer to Xenopus oocytes.

    Get PDF
    BACKGROUND: Nuclear reprogramming is potentially important as a route to cell replacement and drug discovery, but little is known about its mechanism. Nuclear transfer to eggs and oocytes attempts to identify the mechanism of this direct route towards reprogramming by natural components. Here we analyze how the reprogramming of nuclei transplanted to Xenopus oocytes exploits the incorporation of the histone variant H3.3. RESULTS: After nuclear transplantation, oocyte-derived H3.3 but not H3.2, is deposited on several regions of the genome including rDNA, major satellite repeats, and the regulatory regions of Oct4. This major H3.3 deposition occurs in absence of DNA replication, and is HIRA-and transcription-dependent. It is necessary for the shift from a somatic- to an oocyte-type of transcription after nuclear transfer. CONCLUSIONS: This study demonstrates that the incorporation of histone H3.3 is an early and necessary step in the direct reprogramming of somatic cell nuclei by oocyte. It suggests that the incorporation of histone H3.3 is necessary during global changes in transcription that accompany changes in cell fate.RIGHTS : This article is licensed under the BioMed Central licence at http://www.biomedcentral.com/about/license which is similar to the 'Creative Commons Attribution Licence'. In brief you may : copy, distribute, and display the work; make derivative works; or make commercial use of the work - under the following conditions: the original author must be given credit; for any reuse or distribution, it must be made clear to others what the license terms of this work are

    Sperm is epigenetically programmed to regulate gene transcription in embryos.

    Get PDF
    For a long time, it has been assumed that the only role of sperm at fertilization is to introduce the male genome into the egg. Recently, ideas have emerged that the epigenetic state of the sperm nucleus could influence transcription in the embryo. However, conflicting reports have challenged the existence of epigenetic marks on sperm genes, and there are no functional tests supporting the role of sperm epigenetic marking on embryonic gene expression. Here, we show that sperm is epigenetically programmed to regulate embryonic gene expression. By comparing the development of sperm- and spermatid-derived frog embryos, we show that the programming of sperm for successful development relates to its ability to regulate transcription of a set of developmentally important genes. During spermatid maturation into sperm, these genes lose H3K4me2/3 and retain H3K27me3 marks. Experimental removal of these epigenetic marks at fertilization de-regulates gene expression in the resulting embryos in a paternal chromatin-dependent manner. This demonstrates that epigenetic instructions delivered by the sperm at fertilization are required for correct regulation of gene expression in the future embryos. The epigenetic mechanisms of developmental programming revealed here are likely to relate to the mechanisms involved in transgenerational transmission of acquired traits. Understanding how parental experience can influence development of the progeny has broad potential for improving human health.We thank: T. Jenuwein and N. Shukeir for anti-H3K27me3 antibody; A. Bannister, J. Ahringer and E. Miska for comments on the manuscript; Gurdon group members for reading the manuscript; The International Xenopus laevis Genome Project Consortium (the Harland, Rokhsar, Taira labs and others) for providing unpublished genome and gene annotation information. M.T. is supported by WT089613 and by MR/K011022/1. V.G. and P.Z. are funded by AICR 10-0908. A.S. is supported by MR/K011022/1. K.M. is a Research Fellow at Wolfson College and is supported by the Herchel Smith Postdoctoral Fellowship. E.M.M. is supported by National Institutes of Health, National Science Foundation, Cancer Prevention Research Institute of Texas, and the Welch Foundation (F1515). J.J. and J.B.G. are supported by WT101050/Z/13/Z. S.E. acknowledges Boehringer Ingelheim Fond fellowship. A.H.F.M.P. is supported by the Swiss National Science Foundation (31003A_125386) and the Novartis Research Foundation. All members of the Gurdon Institute acknowledge the core support provided by CRUK C6946/A14492 and WT092096.This is the final version of the article. It first appeared from Cold Spring Harbor Laboratory Press via https://doi.org/10.1101/gr.201541.11

    Identification of methylated deoxyadenosines in vertebrates reveals diversity in DNA modifications.

    Get PDF
    Methylation of cytosine deoxynucleotides generates 5-methylcytosine (m(5)dC), a well-established epigenetic mark. However, in higher eukaryotes much less is known about modifications affecting other deoxynucleotides. Here, we report the detection of N(6)-methyldeoxyadenosine (m(6)dA) in vertebrate DNA, specifically in Xenopus laevis but also in other species including mouse and human. Our methylome analysis reveals that m(6)dA is widely distributed across the eukaryotic genome and is present in different cell types but is commonly depleted from gene exons. Thus, direct DNA modifications might be more widespread than previously thought.M.J.K. was supported by the Long-Term Human Frontiers Fellowship (LT000149/2010-L), the Medical Research Council grant (G1001690), and by the Isaac Newton Trust Fellowship (R G76588). The work was sponsored by the Biotechnology and Biological Sciences Research Council grant BB/M022994/1 (J.B.G. and M.J.K.). The Gurdon laboratory is funded by the grant 101050/Z/13/Z (J.B.G.) from the Wellcome Trust, and is supported by the Gurdon Institute core grants, namely by the Wellcome Trust Core Grant (092096/Z/10/Z) and by the Cancer Research UK Grant (C6946/A14492). C.R.B. and G.E.A. are funded by the Wellcome Trust Core Grant. We are grateful to D. Simpson and R. Jones-Green for preparing X. laevis eggs and oocytes, F. Miller for providing us with M. musculus tissue, T. Dyl for X. laevis eggs and D. rerio samples, and to Gurdon laboratory members for their critical comments. We thank U. Ruether for providing us with M. musculus kidney DNA (Entwicklungs- und Molekularbiologie der Tiere, Heinrich Heine Universitaet Duesseldorf, Germany). We also thank J. Ahringer, S. Jackson, A. Bannister and T. Kouzarides for critical input and advice, M. Sciacovelli and E. Gaude for suggestions.This is the author accepted manuscript. The final version is available from Nature Publishing Group via http://dx.doi.org/10.1038/nsmb.314
    corecore