5 research outputs found

    Epidemiological and genetic study of exertional rhabdomyolysis in a Warmblood horse family in Switzerland

    No full text
    REASONS FOR PERFORMING STUDY: Exertional rhabdomyolysis (ER) and its familial basis in Warmblood horses is incompletely understood. OBJECTIVES: To describe the case details, clinical signs and management of ER-affected Warmblood horses from a family with a high prevalence of ER, to determine if histopathological signs of polysaccharide storage myopathy (PSSM) and the glycogen synthase (GYS1) mutation are associated with ER in this family, and to investigate potential risk factors for development of ER. METHODS: A family consisting of a sire with ER and 71 of his descendants was investigated. History of episodes of ER, husbandry, feeding and use was assessed by interviewing horse owners using a standardised questionnaire. All horses were genotyped for GYS1. In 10 ER-affected horses, muscle histopathology was evaluated. RESULTS: Signs of ER were reported in 39% of horses and 51% of the entire family possessed the GYS1 mutation. Horses possessing the GYS1 mutation had a 7.1-times increased risk for developing ER compared to those with the normal genotype (95% confidence interval [CI] 2.37-21.23, P = 0.0005). All muscle samples from horses in the family with ER showed polysaccharide accumulation typical for PSSM, amylase-resistant in 9/10 cases. There was evidence (odds ratio 5.6, CI 1.00-31.32, P = 0.05) that fat or oil feeding improved clinical signs of ER. No other effects of environmental factors associated with clinical signs of ER were identified. CONCLUSION AND POTENTIAL RELEVANCE: PSSM associated with the GYS1 mutation is one identifiable cause of ER in Warmblood horses. Signs of ER are not always manifest in GYS1 positive horses and there are also other causes for ER in Warmblood horses. Breeding animals with the GYS1 mutation results in a high prevalence of ER due to its dominant mode of inheritance

    Clinical and histopathological features of myofibrillar myopathy in Warmblood horses

    No full text
    BackgroundTo report a novel exertional myopathy, myofibrillar myopathy (MFM) in Warmblood (WB) horses.ObjectivesTo 1) describe the distinctive clinical and myopathic features of MFM in Warmblood horses and 2) investigate the potential inheritance of MFM in a Warmblood family.Study designRetrospective selection of MFM cases and prospective evaluation of a Warmblood family.MethodsRetrospectively, muscle biopsies were selected from Warmblood horses diagnosed with MFM and clinical histories obtained (n = 10). Prospectively, muscle biopsies were obtained from controls (n = 8) and a three generation WB family (n = 11). Samples were assessed for histopathology [scored 0-3], fibre types, cytoskeletal and Z disc protein aggregates, electron microscopic alterations (EM) and muscle glycogen concentrations.ResultsMyofibrillar myopathy-affected cases experienced exercise intolerance, reluctance to go forward, stiffness and poorly localised lameness. Abnormal aggregates of the cytoskeletal protein desmin were found in up to 120 type 2a and a few type 2x myofibres of MFM cases. Desmin positive fibres did not stain for developmental myosin, α actinin or dystrophin. Scores for internalised myonuclei (score MFM 0.83 Â± 0.67, controls 0.22 Â± 0.45), anguloid atrophy (MFM 0.95 Â± 0.55, controls 0.31 Â± 0.37) and total myopathic scores (MFM 5.85 Â± 2.10, controls 1.41 Â± 2.17) were significantly higher in MFM cases vs.ControlsFocal Z disc degeneration, myofibrillar disruption and accumulation of irregular granular material was evident in MFM cases. Muscle glycogen concentrations were similar between MFM cases and controls. In the Warmblood family, desmin positive aggregates were found in myofibres of the founding dam and in horses from two subsequent generations.Main limitationsRestricted sample size due to limited availability of well phenotyped cases.ConclusionsA distinctive and potentially heritable form of MFM exists in Warmblood horses that present with exercise intolerance and abnormal hindlimb gait. Muscle tissue is characterised by ectopic accumulation of desmin and Z disc and myofibrillar degeneration
    corecore