19,866 research outputs found

    Coadjoint orbits of the Virasoro algebra and the global Liouville equation

    Get PDF
    The classification of the coadjoint orbits of the Virasoro algebra is reviewed and is then applied to analyze the so-called global Liouville equation. The review is self-contained, elementary and is tailor-made for the application. It is well-known that the Liouville equation for a smooth, real field ϕ\phi under periodic boundary condition is a reduction of the SL(2,R) WZNW model on the cylinder, where the WZNW field g in SL(2,R) is restricted to be Gauss decomposable. If one drops this restriction, the Hamiltonian reduction yields, for the field Q=κg22Q=\kappa g_{22} where κ0\kappa\neq 0 is a constant, what we call the global Liouville equation. Corresponding to the winding number of the SL(2,R) WZNW model there is a topological invariant in the reduced theory, given by the number of zeros of Q over a period. By the substitution Q=±exp(ϕ/2)Q=\pm\exp(- \phi/2), the Liouville theory for a smooth ϕ\phi is recovered in the trivial topological sector. The nontrivial topological sectors can be viewed as singular sectors of the Liouville theory that contain blowing-up solutions in terms of ϕ\phi. Since the global Liouville equation is conformally invariant, its solutions can be described by explicitly listing those solutions for which the stress-energy tensor belongs to a set of representatives of the Virasoro coadjoint orbits chosen by convention. This direct method permits to study the `coadjoint orbit content' of the topological sectors as well as the behaviour of the energy in the sectors. The analysis confirms that the trivial topological sector contains special orbits with hyperbolic monodromy and shows that the energy is bounded from below in this sector only.Comment: Plain TEX, 48 pages, final version to appear in IJMP

    Partial-measurement back-action and non-classical weak values in a superconducting circuit

    Get PDF
    We realize indirect partial measurement of a transmon qubit in circuit quantum electrodynamics by interaction with an ancilla qubit and projective ancilla measurement with a dedicated readout resonator. Accurate control of the interaction and ancilla measurement basis allows tailoring the measurement strength and operator. The tradeoff between measurement strength and qubit back-action is characterized through the distortion of a qubit Rabi oscillation imposed by ancilla measurement in different bases. Combining partial and projective qubit measurements, we provide the solid-state demonstration of the correspondence between a non-classical weak value and the violation of a Leggett-Garg inequality.Comment: 5 pages, 4 figures, and Supplementary Information (8 figures

    Dynamical Casimir effect entangles artificial atoms

    Get PDF
    We show that the physics underlying the dynamical Casimir effect may generate multipartite quantum correlations. To achieve it, we propose a circuit quantum electrodynamics (cQED) scenario involving superconducting quantum interference devices (SQUIDs), cavities, and superconducting qubits, also called artificial atoms. Our results predict the generation of highly entangled states for two and three superconducting qubits in different geometric configurations with realistic parameters. This proposal paves the way for a scalable method of multipartite entanglement generation in cavity networks through dynamical Casimir physics.Comment: Improved version and references added. Accepted for publication in Physical Review Letter

    High Excitation Molecular Gas in the Magellanic Clouds

    Full text link
    We present the first survey of submillimeter CO 4-3 emission in the Magellanic Clouds. The survey is comprised of 15 6'x6' maps obtained using the AST/RO telescope toward the molecular peaks of the Large and Small Magellanic Clouds. We have used these data to constrain the physical conditions in these objects, in particular their molecular gas density and temperature. We find that there are significant amounts of molecular gas associated with most of these molecular peaks, and that high molecular gas temperatures are pervasive throughout our sample. We discuss whether this may be due to the low metallicities and the associated dearth of gas coolants in the Clouds, and conclude that the present sample is insufficient to assert this effect.Comment: 18 pages, 3 figures, 5 tables. To appear in Ap

    Spectral Statistics of Erd{\H o}s-R\'enyi Graphs II: Eigenvalue Spacing and the Extreme Eigenvalues

    Full text link
    We consider the ensemble of adjacency matrices of Erd{\H o}s-R\'enyi random graphs, i.e.\ graphs on NN vertices where every edge is chosen independently and with probability pp(N)p \equiv p(N). We rescale the matrix so that its bulk eigenvalues are of order one. Under the assumption pNN2/3p N \gg N^{2/3}, we prove the universality of eigenvalue distributions both in the bulk and at the edge of the spectrum. More precisely, we prove (1) that the eigenvalue spacing of the Erd{\H o}s-R\'enyi graph in the bulk of the spectrum has the same distribution as that of the Gaussian orthogonal ensemble; and (2) that the second largest eigenvalue of the Erd{\H o}s-R\'enyi graph has the same distribution as the largest eigenvalue of the Gaussian orthogonal ensemble. As an application of our method, we prove the bulk universality of generalized Wigner matrices under the assumption that the matrix entries have at least 4+ϵ4 + \epsilon moments

    Polynuclear growth model, GOE2^2 and random matrix with deterministic source

    Full text link
    We present a random matrix interpretation of the distribution functions which have appeared in the study of the one-dimensional polynuclear growth (PNG) model with external sources. It is shown that the distribution, GOE2^2, which is defined as the square of the GOE Tracy-Widom distribution, can be obtained as the scaled largest eigenvalue distribution of a special case of a random matrix model with a deterministic source, which have been studied in a different context previously. Compared to the original interpretation of the GOE2^2 as ``the square of GOE'', ours has an advantage that it can also describe the transition from the GUE Tracy-Widom distribution to the GOE2^2. We further demonstrate that our random matrix interpretation can be obtained naturally by noting the similarity of the topology between a certain non-colliding Brownian motion model and the multi-layer PNG model with an external source. This provides us with a multi-matrix model interpretation of the multi-point height distributions of the PNG model with an external source.Comment: 27pages, 4 figure

    Photoassisted sequential resonant tunneling through superlattices

    Full text link
    We have analyzed theoretically the photoassisted tunneling current through a superlattice in the presence of an AC potential. For that purpose we have developed a new model to calculate the sequential resonant currrent trhough a superlattice based in the TRansfer Hamiltonian Method. The tunneling current presents new features due to new effective tunneling chanels coming from the photoside bands induced by the AC field. Our theoretical results are in good agreement with the available experimental evidence.Comment: Revtex 3.0 4 pages, 4 figures uuencoded compressed tar-fil

    Invasive Group B Streptococcal Disease in Non-pregnant Adults: A Review with Emphasis on Skin and Soft-tissue Infections

    Get PDF
    Streptococcus agalactiae, commonly referred as group B Streptococcus (GBS), is a major cause of neonatal sepsis and infections in pregnant women. However, the number of invasive infections in non-pregnant adults is growing. Elderly patients and those with chronic underlying conditions, such as diabetes mellitus or compromised immune defence, are at increased risk of invasion. The spectrum of clinical manifestations is broad and includes necrotizing fasciitis and toxic shock syndrome. Although, primary bacteremia and skin and soft-tissue infections are the most frequently reported diagnosis. This article reviews the epidemiology, pathogenesis and treatment of invasive GBS disease in non-pregnant adults, with an emphasis on skin and soft-tissue infection

    Internally Electrodynamic Particle Model: Its Experimental Basis and Its Predictions

    Full text link
    The internally electrodynamic (IED) particle model was derived based on overall experimental observations, with the IED process itself being built directly on three experimental facts, a) electric charges present with all material particles, b) an accelerated charge generates electromagnetic waves according to Maxwell's equations and Planck energy equation and c) source motion produces Doppler effect. A set of well-known basic particle equations and properties become predictable based on first principles solutions for the IED process; several key solutions achieved are outlined, including the de Broglie phase wave, de Broglie relations, Schr\"odinger equation, mass, Einstein mass-energy relation, Newton's law of gravity, single particle self interference, and electromagnetic radiation and absorption; these equations and properties have long been broadly experimentally validated or demonstrated. A specific solution also predicts the Doebner-Goldin equation which emerges to represent a form of long-sought quantum wave equation including gravity. A critical review of the key experiments is given which suggests that the IED process underlies the basic particle equations and properties not just sufficiently but also necessarily.Comment: Presentation at the 27th Int Colloq on Group Theo Meth in Phys, 200
    corecore